<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含有自校正模型的加權多模型自適應控制

張玉振 李擎 張維存

張玉振, 李擎, 張維存. 含有自校正模型的加權多模型自適應控制[J]. 工程科學學報, 2018, 40(11): 1389-1401. doi: 10.13374/j.issn2095-9389.2018.11.013
引用本文: 張玉振, 李擎, 張維存. 含有自校正模型的加權多模型自適應控制[J]. 工程科學學報, 2018, 40(11): 1389-1401. doi: 10.13374/j.issn2095-9389.2018.11.013
ZHANG Yu-zhen, LI Qing, ZHANG Wei-cun. Weighted multiple model adaptive control with self-tuning model[J]. Chinese Journal of Engineering, 2018, 40(11): 1389-1401. doi: 10.13374/j.issn2095-9389.2018.11.013
Citation: ZHANG Yu-zhen, LI Qing, ZHANG Wei-cun. Weighted multiple model adaptive control with self-tuning model[J]. Chinese Journal of Engineering, 2018, 40(11): 1389-1401. doi: 10.13374/j.issn2095-9389.2018.11.013

含有自校正模型的加權多模型自適應控制

doi: 10.13374/j.issn2095-9389.2018.11.013
基金項目: 

國家自然科學基金資助項目(61520106010,61741302)

詳細信息
  • 中圖分類號: TP301.6

Weighted multiple model adaptive control with self-tuning model

  • 摘要: 研究了含有大范圍參數不確定性離散時間被控對象的加權多模型自適應控制問題(包括模型集構建和加權算法分析).通過構建含有自校正模型和多個固定模型的模型集覆蓋并逼近被控對象,在模型輸出誤差可分的前提下,采用基于模型輸出誤差性能指標的加權算法,并依據固定模型中是否包含真實被控對象模型的不同情形分析加權算法的收斂性.在權值收斂的前提下,利用虛擬等價系統理論,分析了參數未知線性時不變和參數跳變的情形,在不依賴于特定局部控制算法的基礎上,證明了此種模型集構建下的加權多模型自適應控制系統的穩定性和收斂性,放寬了先期加權多模型自適應控制系統穩定性分析中關于模型集構建的約束條件.最終,通過計算機MATLAB仿真,驗證了此類加權多模型自適應控制系統的收斂性和閉環穩定性.

     

  • [1] Narendra K S, Xiang C. Adaptive control of discrete-time systems using multiple models. IEEE Trans Autom Control, 2000, 45(9):1669
    [2] Magill D. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans Autom Control, 1965, 10(4):434
    [3] Lainiotis D G. Partitioning:a unifying framework for adaptive systems, I:Estimation. Proc. IEEE, 1976, 64(8):1126
    [4] Lainiotis D G. Partitioning:a unifying framework for adaptive systems, Ⅱ:Control. Proc. IEEE, 1976, 64(8):1182
    [5] Athans M, Castanon D, Dunn K, et al. The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method-Part Ⅰ:equilibrium flight. IEEE Trans Autom Control, 1977, 22(5):768
    [6] Lane D W, Maybeck P S. Multiple model adaptive estimation applied to the LAMBDA URV for failure detection and identification//Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, 1994:678
    [7] Yu C, Roy R J, Kaufman H, et al. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Trans Biomed Eng, 1992, 39(8):765
    [8] Moose R L, Vanlandingham H F, McCabe D H. Modeling and estimation for tracking maneuvering targets. IEEE Trans Aerospace Electron Syst, 1979, 15(3):448
    [9] Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans Control Syst Technol, 1993, 1(3):186
    [10] Badr A, Binder Z, Hagras A N, et al. A multi-model tracking controller for distributed control systems. IFAC Proc Vol, 1984, 17(2):2823
    [11] Martin J F, Schneider A M, Smith N T. Multiple-model adaptive control of blood pressure using sodium nitroprusside. IEEE Trans Biomed Eng, 1987, 34(8):603
    [12] He W G, Kaufman H, Roy R. Multiple model adaptive control procedure for blood pressure control. IEEE Trans Biomed Eng, 1986, 33(1):10
    [13] Chaudhuri B, Majumder R, Pal B C. Application of multiple-model adaptive control strategy for robust damping of interarea oscillations in power system. IEEE Trans Control Syst Technol, 2004, 12(5):727
    [14] Narendra K S, Balakrishnan J. Improving transient response of adaptive control systems using multiple models and switching. IEEE Trans Autom Control, 1994, 39(9):1861
    [15] Narendra K S, Balakrishnan J, Ciliz M K. Adaptation and learning using multiple models, switching, and tuning. IEEE Control Syst, 1995, 15(3):37
    [16] Narendra K S, Balakrishnan J. Adaptive control using multiple models. IEEE Trans Autom Control, 1997, 42(2):171
    [21] Kuipers M, Ioannou P. Multiple model adaptive control with mixing. IEEE Trans Autom Control, 2010, 55(8):1822
    [22] Kuipers M, Ioannou P. Multiple model adaptive control with mixing:A pedagogical example//Proceedings of 47th IEEE Conference on Decision and Control. Cancun, 2009:3239
    [23] Kuipers M, Ioannou P. Practical robust adaptive control:Benchmark example//Proceedings of 2008 American Control Conference. Seattle, 2008:5168
    [24] Baldi S, Ioannou P, Mosca E. Multiple model adaptive mixing control:the discrete-time case. IEEE Trans Autom Control, 2012, 57(4):1040
    [25] Baldi S, Ioannou P A, Mosca E. Discrete-time adaptive mixing control with stability-preserving interpolation:the output regulation problem. IFAC Proc Vol, 2011, 44(1):102
    [28] Han Z, Narendra K S. Second level adaptation using multiple models//Proceedings of 2011 American Control Conference. San Francisco, 2011:2350
    [29] Han Z, Narendra K S. Multiple adaptive models for control//Proceedings of 49th IEEE Conference on Decision and Control. Atlanta, 2010:60
    [30] Zhou Y H, Zhang Z L. High-speed train control based on multiple-model adaptive control with second-level adaptation. Vehicle Syst Dyn, 2014, 52(5):637
    [34] Zhang W C. Stable weighted multiple model adaptive control:discrete-time stochastic plant. Int J Adaptive Control Signal Process, 2013, 27(7):562
    [35] Fekri S, Athans M, Pascoal A. Issues, progress and new results in robust adaptive control. Int J Adaptive Control Signal Process, 2006, 20(10):519
    [40] Zhang W C, Chu T G, Wang L. A new theoretical framework for self-tuning control. Int J Inform Technol, 2005, 11(11):123
    [41] Zhang W C. On the stability and convergence of self-tuning control-virtual equivalent system approach. Int J Control, 2010, 83(5):879
    [43] Zhang W C. Further results on stable weighted multiple model adaptive control:Discrete-time stochastic plant. Int J Adapt Control Signal Process, 2016, 29(12):1497
    [44] Shorten R, Wirth F, Mason O, et al. Stability criteria for switched and hybrid systems. SIAM Rev, 2007, 49(4):545
  • 加載中
計量
  • 文章訪問數:  790
  • HTML全文瀏覽量:  252
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-11-07

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164