<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鐵酸鈣與赤鐵礦非等溫還原動力學

李剛 丁成義 宣森煒 呂學偉 吳珊珊

李剛, 丁成義, 宣森煒, 呂學偉, 吳珊珊. 鐵酸鈣與赤鐵礦非等溫還原動力學[J]. 工程科學學報, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
引用本文: 李剛, 丁成義, 宣森煒, 呂學偉, 吳珊珊. 鐵酸鈣與赤鐵礦非等溫還原動力學[J]. 工程科學學報, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
LI Gang, DING Cheng-yi, XUAN Sen-wei, LÜ Xue-wei, WU Shan-shan. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
Citation: LI Gang, DING Cheng-yi, XUAN Sen-wei, LÜ Xue-wei, WU Shan-shan. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005

鐵酸鈣與赤鐵礦非等溫還原動力學

doi: 10.13374/j.issn2095-9389.2018.11.005
基金項目: 

重慶市鐵礦石超聲波輔助燒結技術研究資助項目(cstc2014kjrc-qnrc90001)

國家自然科學基金資助項目(51544203)

詳細信息
  • 中圖分類號: TF521+.1

Non-isothermal reduction kinetics of calcium ferrite and hematite

  • 摘要: 采用非等溫熱重的方法,在30% CO+70% N2(體積分數)氣氛下,以10 K·min-1升溫至1123 K的過程中,比較了鐵酸鈣與赤鐵礦的逐級還原過程及其還原動力學.結果表明:鐵酸鈣和赤鐵礦開始還原溫度分別為873 K和623 K;由反應速率與反應度的關系及分階段X射線衍射物相分析發現,鐵酸鈣還原過程為兩段式反應(CaO·Fe2O3→2CaO·Fe2O3→Fe),而赤鐵礦還原過程為傳統的三段式反應(Fe2O3→Fe3O4→FeO→Fe).通過Freeman-Carroll法計算得知鐵酸鈣和赤鐵礦的還原平均活化能分別為49.88和43.74 kJ·mol-1;鐵酸鈣還原過程符合隨機成核隨后生長模型,動力學模式函數為Avrami-Erofeev方程,其積分形式為[-ln (1-α)]n;而赤鐵礦還原過程動力學機理分為兩部分,在還原度α為0.1~0.5時,為三級化學反應模型,模式函數積分形式為1-(1-α)3;在α為0.5~0.9時,符合二維圓柱形擴散模型,動力學模式函數為Valensi方程,其積分形式為α+(1-α)ln (1-α).

     

  • [3] Decker B F, Kasper J S. The structure of calcium ferrite. Acta Crystallogr, 1957, 10(4):332
    [4] Chessin H, Turkdogan E T. A crystallographic investigation of calcium diferrite. J Am Ceram Soc, 1962, 45(12):597
    [5] Sasaki M, Nakazawa T. On the formation of calcium ferrite in sintered ore. Tetsu-to-Hagané, 1968, 54(12):1217
    [6] Sato S, Kikuchi T, Yoshii C. Reduction tests of synthetic calcium ferrites:in ternary systems of CaO-FeO-Fe2O3. Bull Faculty Eng Hokkaido Univ, 1971, 61:39
    [7] El-Geassy A A. Reduction of CaO and/or MgO-doped Fe2O3 compacts with carbon-monoxide at 1173-1473 K. ISIJ Int, 1996, 36(11):1344
    [8] von Bogdandy L, Engell H J. The Reduction of Iron Ores:Scientific Basis and Technology.1st Ed. Berlin:Springer-Verlag Berlin Heudelberg GmbH, 1971
    [9] Ding C Y, Lü X W, Xuan S W, et al. Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO-N2 gas mixtures. ISIJ Int, 2016, 56(12):2118
    [10] Osman M A, Manning F S, Philbrook W O. Reduction of single particles and packed beds of hematite with carbon monoxide. AIChE J, 1966, 12(4):685
    [11] Guo D B, Hu M, Pu C X, et al. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. Int J Hydrogen Energy, 2015, 40(14):4733
    [12] Longbottom R J, Kolbeinsen L. Iron ore reduction with CO and H2 gas mixtures-Thermodynamic and kinetic modelling//Proceedings of the 4th Ulcos Seminar-New Direct Reduction (DR). Maizieres-les-Metz, 2008:1
    [13] Szekely J, Evans J W, Hong Y S. Gas-solid Reactions. 1st Ed. Salt Lake City:Academic Press, 1976
    [14] McCune R C, Wynblatt P. Calcium segregation to a magnesium oxide (100) surface. J Am Ceram Soc, 1983, 66(2):111
    [15] Ma R P, Felder R M, Ferrell J K. Modeling a pilot-scale fluidized bed coal gasification reactor. Fuel Process Technol, 1988, 19(3):265
    [16] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta, 1989, 138(2):337
    [17] Málek J, Smr AčG2 ka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta, 1991, 186(1):153
    [18] Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta, 1992, 200:257
    [19] Málek J, Criado J M. A simple method of kinetic model discrimination. Part 1. Analysis of differential non-isothermal data. Thermochim Acta, 1994, 236:187
    [20] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta, 1989, 138(2):337
    [21] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914):68
    [22] Avrami M. Kinetics of phase change. Ⅱ transformation-time relations for random distribution of nuclei. J Chem Phys, 1940, 8(2):212
    [23] Avrami M. Kinetics of phase change. I general theory. J Chem Phys, 1939, 7(12):1103
    [24] Avrami M. Granulation, phase change, and microstructure kinetics of phase change. Ⅲ. J Chem Phys, 1941, 9(2):177
    [25] Sayama S, Ueda Y, Yokoyama S, et al. Carbon deposition in the reduction of iron ore by CO under high pressure. Tetsu-to-Hagane, 1975, 61(8):2115
    [26] Paananen T, Heikkinen E P, Kokkonen T, et al. Preparation of mono-, di-and hemicalcium ferrite phases via melt for reduction kinetics investigations. Steel Res Int, 2009, 80(6):402
    [28] Nasr M I, Omar A A, Khedr M H, et al. Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction. ISIJ Int, 1995, 35(9):1043
    [29] El-Geassy A A. Gaseous reduction of Fe2O3 compacts at 600 to 1050℃. J Mater Sci, 1986, 21(11):3889
    [30] El-Geassy A A. Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173-1473 K. ISIJ Int, 1997, 37(9):844
    [31] Murayama T, Ono Y, Kawai Y. Step-wise reduction of hematite pellets with CO-CO2 gas mixtures. Tetsu-to-Hagané, 1977, 63(7):1099
    [32] Pan W, Wu K, Zhao X, et al. Reduction kinetics of Shougang iron ore sinter. J Univ Sci Technol Beijing, 2013, 35(1):35
  • 加載中
計量
  • 文章訪問數:  855
  • HTML全文瀏覽量:  283
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-11-15

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164