[1] |
Wang S Q, Gu K, Zhang X, et al. Subjective and objective quality assessment of compressed screen content images. IEEE J Emerging Sel Top Circuits Syst, 2016, 6(4):532
|
[2] |
Zhang X F, Wang S Q, Gu K, et al. Just-noticeable difference-based perceptual optimization for JPEG compression. IEEE Signal Process Lett, 2017, 24(1):96
|
[3] |
Li L D, Yan Y, Lu Z L, et al. No-reference quality assessment of deblurred images based on natural scene statistics. IEEE Access, 2017, 5:2163
|
[4] |
Gu K, Zhai G T, Wang S Q, et al. A general histogram modification framework for efficient contrast enhancement//IEEE International Symposium on Circuits and Systems. Lisbon, 2015:2816
|
[5] |
Ruderman D L. The statistics of natural images. Network Comput Neural Syst, 1994, 5(4):517
|
[6] |
Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain. IEEE Trans Image Process, 2012, 21(8):3339
|
[7] |
Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality. IEEE Trans Image Process, 2011, 20(12):3350
|
[8] |
Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process, 2012, 21(12):4695
|
[9] |
Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 1962, 160(1):106
|
[10] |
Clark M, Bovik A C. Experiments in segmenting texton patterns using localized spatial filters. Pattern Recognit, 1989, 22(6):707
|
[11] |
Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric//IEEE International Conference on Image Processing (ICIP). Rochester, 2002:Ⅲ-57
|
[12] |
Marziliano P, Dufaux F, Winkler S, et al. Perceptual blur and ringing metrics:application to JPEG2000. Signal Process:Image Commun, 2004, 19(2):163
|
[13] |
Liu L X, Hua Y, Zhao Q J, et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process:Image Commun, 2016, 40:1
|
[14] |
Zhang M, Muramatsu C, Zhou X R, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett, 2014, 22(2):207
|
[15] |
Li Q H, Lin W S, Fang Y M. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process Lett, 2016, 23(4):541
|
[16] |
Yue G H, Hou C P, Gu K, et al. No reference image blurriness assessment with local binary patterns. J Visual Commun Image Representation, 2017, 49:382
|
[18] |
Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron, 2009, 10(4):30
|
[19] |
Ghosh K, Sarkar S, Bhaumik K. Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vision Comput, 2007, 25(8):1228
|
[20] |
Gu K, Li L D, Lu H, et al. A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans Ind Electron, 2017, 64(5):3903
|
[21] |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity. IEEE Trans Image Process, 2004, 13(4):600
|
[22] |
Ye P, Kumar J, Kang L, et al. Unsupervised feature learning framework for no-reference image quality assessment//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, 2012:1098
|
[23] |
Zhang M, Muramatsu C, Zhou X R, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett, 2014, 22(2):207
|
[24] |
Gu K, Zhai G T, Yang X K, et al. Using free energy principle for blind image quality assessment. IEEE Trans Multimedia, 2015, 17(1):50
|