<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

宏觀顆粒增強鐵基復合材料的制備與性能

邱博 邢書明 董琦

邱博, 邢書明, 董琦. 宏觀顆粒增強鐵基復合材料的制備與性能[J]. 工程科學學報, 2018, 40(8): 969-978. doi: 10.13374/j.issn2095-9389.2018.08.011
引用本文: 邱博, 邢書明, 董琦. 宏觀顆粒增強鐵基復合材料的制備與性能[J]. 工程科學學報, 2018, 40(8): 969-978. doi: 10.13374/j.issn2095-9389.2018.08.011
QIU Bo, XING Shu-ming, DONG Qi. Fabrication and properties of Fe matrix composites reinforced by macro-particles[J]. Chinese Journal of Engineering, 2018, 40(8): 969-978. doi: 10.13374/j.issn2095-9389.2018.08.011
Citation: QIU Bo, XING Shu-ming, DONG Qi. Fabrication and properties of Fe matrix composites reinforced by macro-particles[J]. Chinese Journal of Engineering, 2018, 40(8): 969-978. doi: 10.13374/j.issn2095-9389.2018.08.011

宏觀顆粒增強鐵基復合材料的制備與性能

doi: 10.13374/j.issn2095-9389.2018.08.011
基金項目: 

中央高校基本科研業務費專項資金資助項目(2018YJS139)

詳細信息
  • 中圖分類號: TB331

Fabrication and properties of Fe matrix composites reinforced by macro-particles

  • 摘要: 顆粒與基體之間難以均勻穩定的混合以及二者的界面結合強度較差是限制顆粒增強金屬基復合材料制備以及推廣應用的共性關鍵問題,而目前的主要解決措施"預制體法"以及"潤濕化預處理技術"又存在生產效率較低、制備成本較高等問題.基于此,在液態模鍛的基礎上,提出了不做預制體、也不進行潤濕化預處理的制備顆粒增強金屬基復合材料的新技術——"隨流混合+高壓復合"技術,并采用此方法成功制備了復合效果良好的ZTA/KmTBCr26抗磨復合材料.研究了ZTA/KmTBCr26復合材料的微觀組織、硬度以及沖擊性能,發現復合材料內部顆粒分布比較均勻,顆粒與KmTBCr26基體的結合緊密,屬于微機械嚙合.沖擊試驗結果表明,復合材料的沖擊韌性與單一金屬基體相比顯著降低,沖擊斷口形貌顯示材料的斷裂是沿顆粒內部擴展的,沒有出現顆粒的整體脫落,說明陶瓷顆粒與金屬基體具有比較高的結合強度.考察了ZTA/KmTBCr26復合材料與單一KmTBCr26的干摩擦磨損性能,結果表明,低載荷條件下ZTA/KmTBCr26復合材料的磨損性能是KmTBCr26的1.82倍,而高載荷條件下復合材料的磨損性能則是KmTBCr26的3.3倍.

     

  • [1] Wiengmoon A, Chairuangsri T, Brown A, et al. Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons. Acta Mater, 2005, 53(15):4143
    [2] Miracle D B. Metal matrix composites——from science to technological significance. Compos Sci Technol, 2005, 65(15-16):2526
    [3] Akhtar F. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. J Alloys Compd, 2008, 459(1-2):491
    [6] Francois H. Composite Wear Component: USA Patent, 6399176B1. 2002-06-04
    [8] Kish O, Froumin N, Aizenshtein M, et al. Interfacial interaction and wetting in the Ta2O5/Cu-Al system. J Mater Eng Perform, 2014, 23(5):1551
    [10] Liu A G, Guo M H, Zhao M H, et al. Microstructure and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection. Surf Coat Technol, 2007, 201(18):7978
    [12] Edelbauer J, Schuller D, Lott O, et al. High temperature squeeze casting of nickel based metal matrix composites with interpenetrating microstructure. Mater Sci Forum, 2015, 825-826:93
    [15] Malomo B O, Fadodun O O, Oluwasegun K M, et al. The effect of controlled melt-solidification on the strain rate sensitivity of a squeeze-cast hybrid-reinforced aluminum AA 6061 matrix composite. Int J Eng Res Afr, 2015, 16:1
    [16] Gurusamy P, Balasivanandha P S. Effect of the squeeze pressure on the mechanical properties of the squeeze cast Al/SiCp metal matrix composite. Int J Microstruct Mater Prop, 2013, 8(4-5):299
    [17] Llorca J, Martin A, Ruiz J, et al. Particulate fracture during deformation of a spray formed metal-matrix composite. Metall Trans A, 1993, 24(7):1575
    [18] Turnbull A, De Los Rios E R. The effect of grain size on fatigue crack growth in an aluminum magnesium alloy. Fatigue Fract Eng Mater Struct, 1995, 18(11):1355
    [20] Kamat S V, Hirth J P, Mehrabian R. Mechanical properties of particulate-reinforced aluminum-matrix composites. Acta Mater, 1989, 37(9):2395
    [22] Ashby M F, Abulawi J, Kong H S. Temperature maps for frictional heating in dry sliding. Tribol Trans, 1991, 34(4):577
  • 加載中
計量
  • 文章訪問數:  760
  • HTML全文瀏覽量:  233
  • PDF下載量:  17
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-09-23

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164