<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

細粒層對浸礦表面形貌及鈍化的影響

尹升華 王雷鳴 潘晨陽 陳勛

尹升華, 王雷鳴, 潘晨陽, 陳勛. 細粒層對浸礦表面形貌及鈍化的影響[J]. 工程科學學報, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
引用本文: 尹升華, 王雷鳴, 潘晨陽, 陳勛. 細粒層對浸礦表面形貌及鈍化的影響[J]. 工程科學學報, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun. Effect of fine interlayers on surface morphology and passivation during leaching[J]. Chinese Journal of Engineering, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
Citation: YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun. Effect of fine interlayers on surface morphology and passivation during leaching[J]. Chinese Journal of Engineering, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003

細粒層對浸礦表面形貌及鈍化的影響

doi: 10.13374/j.issn2095-9389.2018.08.003
基金項目: 

國家優秀青年科學基金資助項目(51722401);國家自然科學基金重點資助項目(51734001)

詳細信息
  • 中圖分類號: TD862

Effect of fine interlayers on surface morphology and passivation during leaching

  • 摘要: 由于礦石粒徑配比、表面粗糙度、密度等性質差異,筑堆過程中堆內極易出現礦石顆粒偏析現象.細粒層是導致礦石表面受侵蝕程度不均的關鍵因素,其嚴重制約了銅礦資源的高效浸取.為探究細粒層對礦石浸出效果、表面形貌及鈍化現象的影響,選取粗顆粒礦石(4 mm < d < 6 mm)與細顆粒礦石(2 mm < d < 4 mm),開展不同細粒層位置下次生硫化銅礦微生物浸出實驗.結合CT掃描與冷場電鏡掃描技術等分析手段,從宏、細、微觀多層面,探究不同細粒層位置下礦石宏觀浸出規律,細觀礦石團聚結塊,微觀表面形貌特征與鈍化.結果表明:細粒層導致銅浸出率普遍降低,均低于無細粒層、均勻粗顆粒介質的實驗組;不同礦堆位置處細粒層對浸出效果影響不同,細粒層位于頂部的實驗組銅浸出效果最優,浸礦60 d銅浸出率達71.3%;同一細粒層不同位置處礦石表面孔裂結構演化程度不一;浸礦60 d后,銅浸出率趨于峰值,礦石團聚結塊與鈍化現象顯著,礦石表面形成以黃鉀鐵礬、多硫化物、胞外多聚物、硫膜為主的鈍化物質層.

     

  • [1] Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China:review and prospect. Miner, 2018, 8(2):32
    [2] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores——a brief overview. Hydrometallurgy, 2015, 165:206
    [3] Yang S R, Xie J Y, Qiu G Z, et al. Research and application of bioleaching and biooxidation technologies in China. Miner Eng, 2002, 15(5):361
    [4] Webb G, Tyler S W, Collord J, et al. Field-scale analysis of flow mechanisms in highly heterogeneous mining media. Vadose Zone J, 2008, 7(3):899
    [5] Wu A X, Yin S H, Yang B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4):124
    [6] Warren G W. Hydrometallurgy——a review and preview. JOM, 1984, 36(4):61.
    [7] Yen Y K, Lin C L, Miller J D. Particle overlap and segregation problems in on-line coarse particle size measurement. Powder Technol, 1998, 98(1):1
    [8] Lin C L, Miller J D. Development of a PC, image-based, on-line particle-size analyzer. Miner Metall Process, 1993, 10(1):29
    [9] Poisson J, Chouteau M, Aubertin M, et al. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J Appl Geophys, 2009, 67(2):179
    [14] Sheikhzadeh G A, Mehrabian M A, Mansouri S H, et al. Computational modelling of unsaturated flow of liquid in heap leaching——using the results of column tests to calibrate the model. Int J Heat Mass Transfer, 2005, 48(2):279
    [16] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. Trans Nonferrous Met Soc China, 2016, 26(3):835
    [17] Erguler G K, Erguler Z A, Akcakoca H, et al. The effect of column dimensions and particle size on the results of kinetic column test used for acid mine drainage (AMD) prediction. Miner Eng, 2014, 55:18
    [19] Wu A X, Yin S H, Qin W Q, et al. The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching. Hydrometallurgy, 2009, 95(1-2):76
    [24] Cariaga E, Concha F, Sepúlveda M. Flow through porous media with applications to heap leaching of copper ores. Chem Eng J, 2005, 111(2-3):151
    [25] Agate A D, Korczynski M S, Lundgren D G. Extracellular complex from the culture filtrate of Ferrobacillus ferrooxidans. Can J Microbiol, 1969, 15(3):259
    [26] Zhao X Q, Wang R C, Lu X C, et al. Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans. Miner Eng, 2013, 53:184
    [27] Panda S, Parhi P K, Nayak B D, et al. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer. Bioresour Technol, 2013, 130:332
  • 加載中
計量
  • 文章訪問數:  960
  • HTML全文瀏覽量:  429
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-08-30

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164