[1] |
Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources, 2012, 208:210
|
[2] |
Rao Z H, Wang S F. A review of power battery thermal energy management. Renewable Sustainable Energy Rev, 2011, 15(9):4554
|
[6] |
Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4):939
|
[8] |
Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials:a review. J Power Sources, 2013, 240:66
|
[9] |
Herrmann M. Packaging-materials review. AIP Conference Proc, 2014, 1597(1):121
|
[10] |
De las Casas C, Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources, 2012, 208:74
|
[14] |
Zhang W X, Chen X, Chen Q P, et al. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. J Fire Sci, 2015, 33(1):22
|
[15] |
Kawamura T, Kimura A, Egashira M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J Power Sources, 2002, 104(2):260
|
[16] |
Fu Y Y, Lu S, Shi L, et al. Combustion characteristics of electrolyte pool fires for lithium ion batteries. J Electrochem Soc, 2016, 163(9):A2022
|
[17] |
Wang Q S, Sun J H, Chen X F, et al. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater Res Bull, 2009, 44(3):543
|
[18] |
MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:I. Li0.5CoO2. J Electrochem Soc, 2001, 148(11):A1205
|
[19] |
MacNeil D D, Larcher D, Dahn J R. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature. J Electrochem Soc, 1999, 146(10):3596
|
[20] |
Spotnitz R, Franklin J. Abuse behavior of high-power lithium-ion cells. J Power Sources, 2003, 113(1):81
|
[21] |
Biensan P, Simon B, Pérès J P, et al. On safety of lithium-ion cells. J Power Sources, 1999, 81-82:906
|
[22] |
Mendoza-Hernandez O S, Ishikawa H, Nishikawa Y, et al. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. J Power Sources, 2015, 280:499
|
[23] |
Wang Q S, Zhao X J, Ye J N, et al. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim, 2016, 124(1):417
|
[24] |
Sun Q J, Wang Q S, Zhao X J, et al. Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Convers Manage, 2015, 92:184
|
[27] |
Chen M, Sun Q J, Li Y Q, et al. A thermal runaway simulation on a lithium titanate battery and the battery module. Energies, 2015, 8(1):490
|
[28] |
Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries. J Power Sources, 2005, 146(1-2):97
|
[29] |
Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275:261
|
[31] |
Ping P, Wang Q S, Huang P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources, 2015, 285:80
|
[32] |
Huang P F, Wang Q S, Li K, et al. The combustion behavior of large scale lithium titanate battery. Sci Rep, 2015, 5:7788-1
|
[33] |
Chen M Y, Liu J H, Lin X, et al. Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim, 2016, 124(2):865
|
[34] |
Fu Y Y, Lu S, Li K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources, 2015, 273:216
|
[35] |
Matsumura H, Itoh S, Matsushima K, et al. Temperature characteristics of a hybrid electric vehicle fire. SAE Int J Alternative Powertrains, 2012, 1(1):195
|
[36] |
Takahashi M, Takeuchi M, Maeda K, et al. Comparison of fires in lithium-ion battery vehicles and gasoline vehicles. SAE Int J Passenger Cars-Electron Electrical Syst, 2014, 7(1):213
|
[37] |
Yang H, Shen X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell. J Power Sources, 2007, 167(2):515
|
[38] |
Yang H, Zhuang G V, Ross Jr P N. Thermal stability of LiPF6, salt and Li-ion battery electrolytes containing LiPF6. J Power Sources, 2006, 161(1):573
|
[39] |
Andersson P, Blomqvist P, Lorén A, et al. Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries. Fire Mater, 2016, 40(8):999
|
[40] |
Larsson F, Andersson P, Blomqvist P, et al. Characteristics of lithium-ion batteries during fire tests. J Power Sources, 2014, 271:414
|
[41] |
Sturk D, Hoffmann L, Ahlberg Tidblad A. Fire tests on E-vehicle battery cells and packs. Traffic Injury Prevention, 2015, 16(Suppl 1):S159
|
[42] |
Campion C L, Li W T, Lucht B L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc, 2005, 152(12):A2327
|
[43] |
MacNeil D D, Dahn J R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J Electrochem Soc, 2002, 149(7):A912
|
[44] |
Abraham D P, Roth E P, Kostecki R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources, 2006, 161(1):648
|
[45] |
Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries. SAE Int J Alternative Powertrains, 2014, 3(1):98
|
[47] |
Yim T, Park M S, Woo S G, et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett, 2015, 15(8):5059
|
[48] |
Xu J, Lan C J, Qiao Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng, 2017, 110:883
|
[51] |
Larsson F, Andersson P, Blomqvist P, et al. Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep, 2017, 7:10018-1
|
[53] |
Wang Q S, Shao G Z, Duan Q L, et al. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol, 2016, 52(2):387
|
[54] |
Blum A, Long R T. Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passenger Cars-Mechanical Syst, 2015, 8(2):565
|
[55] |
Rao H, Huang Z X, Zhang H, et al. Study of fire tests and fire safety measures on lithium ion battery used on ships//International Conference on Transportation Information and Safety. Wuhan, 2015:865
|