<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多機器人編隊控制研究進展

賈永楠 李擎

賈永楠, 李擎. 多機器人編隊控制研究進展[J]. 工程科學學報, 2018, 40(8): 893-900. doi: 10.13374/j.issn2095-9389.2018.08.001
引用本文: 賈永楠, 李擎. 多機器人編隊控制研究進展[J]. 工程科學學報, 2018, 40(8): 893-900. doi: 10.13374/j.issn2095-9389.2018.08.001
JIA Yong-nan, LI Qing. Research development of multi-robot formation control[J]. Chinese Journal of Engineering, 2018, 40(8): 893-900. doi: 10.13374/j.issn2095-9389.2018.08.001
Citation: JIA Yong-nan, LI Qing. Research development of multi-robot formation control[J]. Chinese Journal of Engineering, 2018, 40(8): 893-900. doi: 10.13374/j.issn2095-9389.2018.08.001

多機器人編隊控制研究進展

doi: 10.13374/j.issn2095-9389.2018.08.001
基金項目: 

國家自然科學基金青年資助項目(61603362);國家博士后基金資助項目(2016M600923);北京科技大學基本科研業務費資助項目(2017年度)

詳細信息
  • 中圖分類號: V249.1

Research development of multi-robot formation control

  • 摘要: 首先介紹了傳統的編隊控制方法的定義、特點和常用方法及優缺點,并將傳統編隊控制時代定義為前編隊控制時代.隨著多智能體技術的發展,將多智能體技術引入到編隊控制問題中,誕生了眾多新的研究成果,稱為后編隊控制時代.后編隊控制時代以多智能體技術為基礎,隨著通信技術、計算機技術、人工智能技術的發展而逐漸壯大起來,并受到了學者的廣泛關注.前編隊控制時代強調多機器人通過編隊協作完成單個機器人無法實現的任務,提高任務完成效率且縮短任務完成時間.后編隊控制時代則是在前編隊控制時代的基礎上,更強調低成本、同步性和協同性,但卻不那么重視每個個體的任務分工,甚至是按照規則自由分配任務,不再有"不可替代"的個體存在.最后給出了研究編隊控制問題的基本思路和目前尚待解決的關鍵問題.

     

  • [1] Shao J, Xie G, Wang L. Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl, 2007, 1(2):545
    [2] Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures. Autonomous Robots, 1997, 4(4):387
    [3] Balch T, Arkin R C. Behavior-based formation control for multi-robot teams. IEEE Trans Rob Autom, 1998, 14(6):926
    [4] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, 2001:2968
    [5] Kushleyev A, Mellinger D, Powers C, et al. Towards a swarm of agile micro quadrotors. Autonomous Robots, 2013, 35(4):287
    [6] Dong X W, Yu B C, Shi Z Y, et al. Time-varying formation control for unmanned aerial vehicles:theories and applications. IEEE Trans Control Syst Technol, 2015, 23(1):340
    [7] Shao J Y, Yu J Z, Wang L. Formation control of multiple biomimetic robotic fish//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, 2006:2503
    [8] Zhao W, Hu Y H, Wang L. Leader-following formation control of multiple vision-based autonomous robotic fish//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Shanghai, 2009:579
    [9] Jia Y N, Wang L. Leader-follower flocking of multiple robotic fish. IEEE/ASME Trans Mechatronics, 2015, 20(3):1372
    [10] Vidal R, Shakernia O, Sastry S. Formation control of non-holonomic mobile robots with omnidirectional visual servoing and motion segmentation//Proceedings of IEEE International Conference on Robotics and Automation. Taipei, 2003:584
    [11] Cai Z S, Zhao J, Cao J. Formation control and obstacle avoidance for multiple robots subject to wheel-slip. Int J Adv Rob Syst, 2012, 9(5):188
    [12] Nascimento T P, Conceicao A G S, Moreira A P. Multi-robot systems formation control with obstacle avoidance//Proceedings of the 19th World Congress The International Federation of Automatic Control. Cape Town, 2014:5703
    [13] Peng Z X, Yang S C, Wen G G, et al. Adaptive distributed formation control for multiple non-holonomic wheeled mobile robots. Neurocomputing, 2016, 173:1485
    [14] Angeli D, Bliman P A. Stability of leaderless discrete-time multi-agent systems. Math Control Sign Syst, 2006, 18(4):293
    [15] Chu T G, Wang L, Chen T W. Self-organized motion in anisotropic swarms. J Control Theory Appl, 2003, 1(1):77
    [16] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control, 2004, 49(9):1520
    [17] Olfati-Saber R. Flocking for multi-agent dynamic systems:algorithms and theory. IEEE Trans Autom Control, 2006, 51(3):401
    [18] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Syst, 2007, 27(2):71
    [19] Vicsek T. A question of scale. Nature, 2001, 411(6836):421
    [20] Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Autom Control, 2003, 48(4):692
    [21] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Autom Control, 2007, 52(5):852
    [22] Reynolds C W. Flocks, birds, and schools:a distributed behavioral model. Comput Graphics, 1987, 21:25
    [23] Vicsek T, Czirok A, Jacob E B, et al. Novel type of phase transitions in a system of self-driven particles. Phys Rev Lett, 1995, 75(6):1226
    [24] Ren W. Consensus based formation control strategies for multi-vehicle systems//Proceedings of the 2006 American Control Conference. Minneapoils, 2006:1
    [25] De Gennaro M C, Jadbabaie A. Formation control for a cooperative multi-agent system using decentralized navigation functions//Proceedings of the 2006 American Control Conference. Minneapolis, 2006:1346
    [26] Xiao F, Wang L, Chen J, et al. Finite-time formation control for multi-agent systems. Automatica, 2009, 45(11):2605
    [27] Oh K K, Park M C, Ahn H S. A survey of multi-agent formation control. Automatica, 2015, 53:424
    [28] Fax J A, Murry R M. Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control, 49(9):1465
    [29] Wen G H, Duan Z S, Ren W, et al. Distributed consensus of multi-agent systems with general linear node dynamics through intermittent communications. Int J Robust and Nonlinear Control, 2014, 24(16):2438
    [30] Oh K K, Ahn H S. Formation control of mobile agents based on inter-agent distance dynamics. Automatica, 2011, 47(10):2306
    [31] Jia Y N, Wang L. Decentralized formation flocking for multiple non-holonomic agents//IEEE Conference on Cybernetics and Intelligent Systems (CIS). Manila, 2013:100
    [32] Oh K K, Ahn H S. Formation control of mobile agents based on distributed position estimation. IEEE Trans Autom Control, 2013, 58(3):737
    [33] Anderson B D O, Yu C B. Range-only sensing for formation shape control and easy sensor network localization//Proceedings of the 2011 Chinese Control and Decision Conference. Mianyang, 2011:3310
    [34] Eren T. Formation shape control based on bearing rigidity. Int J Control, 2012, 85(9):1361
    [35] Li Z K, Ren W, Liu X D, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int J Robust Nonlinear Control, 2013, 23(5):534
    [36] Marshall J A, Broucke M E, Francis B A. Formations of vehicles in cyclic pursuit. IEEE Trans Autom Control, 2004, 49(11):1963
    [37] Montijano E, Cristofalo E, Zhou D J, et al. Vision-based distributed formation control without an external positioning system. IEEE Trans Rob, 2016, 32(2):339
    [38] Wang H S, Guo D J, Liang X W, et al. Adaptive vision-based leader-follower formation control of mobile robots. IEEE Trans Ind Electron, 2017, 64(4):2893
    [39] Chen X H, Jia Y M. Adaptive leader-follower formation control of non-holonomic mobile robots using active vision. IET Control Theory Appl, 2015, 9(8):1302
    [40] Liang X W, Liu Y H, Wang H S, et al. Leader-following formation tracking control of mobile robots without direct position measurements. IEEE Trans Autom Control, 2016, 61(12):4131
    [41] Moshtagh N, Michael N, Jadbabaie A, et al. Vision-based, distributed control laws for motion coordination of nonholonomic robots. IEEE Trans Rob, 2009, 25(4):851
    [42] Morozova N S. Formation control and obstacle avoidance for multi-agent systems with dynamic topology//2005 International Conference on Stability and Control Processes in Memory of V.I. Zubov (SCP). St. Petersburg, 2015:580
    [43] Poonawala H A, Satici A C, Eckert H, et al. Collision-free formation control with decentralized connectivity preservation for nonholonomic-wheeled mobile robots. IEEE Trans Control Network Syst, 2015, 2(2):122
    [44] Liu Z, Chen W D, Lu J G, et al. Formation control of mobile robots using distributed controller with sampled-data and communication delays. IEEE Trans Control Syst Technol, 2016, 24(6):2125
    [45] Dong X W, Xi J X, Lu G, et al. Formation control for high-order linear time-invariant multi-agent systems with time delays. IEEE Trans Control Network Syst, 2014, 1(3):232
    [46] Kwon J W, Chwa D. Hierarchical formation control based on a vector field method for wheeled mobile robots. IEEE Trans Rob, 2012, 28(6):1335
    [47] Park B S, Park J B, Choi Y H. Robust adaptive formation control and collision avoidance for electrically driven non-holonomic mobile robots. IET Control Theory Appl, 2011, 5(3):514
    [48] Guillet A, Lenain R, Thuilot B, et al. Adaptable robot formation control:adaptive and predictive formation control of autonomous vehicles. IEEE Rob Autom Mag, 2014, 21(1):28
    [49] Dierks T, Jagannathan S. Neural network output feedback control of robot formations. IEEE Trans Syst Man Cybern, 2010, 40(2):383
    [50] Dierks T, Brenner B, Jagannathan S. Neural network-based optimal control of mobile robot formations with reduced information exchange. IEEE Trans Control Syst Technol, 2013, 21(4):1407
    [51] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control, 2003, 48(9):988
  • 加載中
計量
  • 文章訪問數:  1351
  • HTML全文瀏覽量:  589
  • PDF下載量:  116
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-09-29

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164