<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種改進的人工蜂群算法——粒子蜂群算法

王繼超 李擎 崔家瑞 左文香 趙越飛

王繼超, 李擎, 崔家瑞, 左文香, 趙越飛. 一種改進的人工蜂群算法——粒子蜂群算法[J]. 工程科學學報, 2018, 40(7): 871-881. doi: 10.13374/j.issn2095-9389.2018.07.014
引用本文: 王繼超, 李擎, 崔家瑞, 左文香, 趙越飛. 一種改進的人工蜂群算法——粒子蜂群算法[J]. 工程科學學報, 2018, 40(7): 871-881. doi: 10.13374/j.issn2095-9389.2018.07.014
WANG Ji-chao, LI Qing, CUI Jia-rui, ZUO Wen-xiang, ZHAO Yue-fei. An improved artificial bee colony algorithm: particle bee colony[J]. Chinese Journal of Engineering, 2018, 40(7): 871-881. doi: 10.13374/j.issn2095-9389.2018.07.014
Citation: WANG Ji-chao, LI Qing, CUI Jia-rui, ZUO Wen-xiang, ZHAO Yue-fei. An improved artificial bee colony algorithm: particle bee colony[J]. Chinese Journal of Engineering, 2018, 40(7): 871-881. doi: 10.13374/j.issn2095-9389.2018.07.014

一種改進的人工蜂群算法——粒子蜂群算法

doi: 10.13374/j.issn2095-9389.2018.07.014
基金項目: 

國家自然科學基金資助項目(61673098)

詳細信息
  • 中圖分類號: TP18

An improved artificial bee colony algorithm: particle bee colony

  • 摘要: 針對經典人工蜂群算法收斂速率較慢,后期易陷入局部最優解的不足,本文將粒子群算法中"全局最優"的思想引入到人工蜂群算法的改進過程,從而形成了一種新的人工蜂群改進算法——粒子蜂群算法.首先,提出了趨優度的概念,用來衡量引領蜂在有限次迭代過程中向全局最優解靠近或遠離的程度,趨優度值可以評價個體的"發展潛力",趨優度值越低的個體,越需要增大變異的程度,以便找到質量更優的解.其次,專門設計了一種新的蜜蜂群體——粒子蜂,在引領蜂變異階段根據趨優度的大小將引領蜂變異為偵查蜂和粒子蜂,粒子蜂的出現在很大程度上增加了種群的多樣性,拓展了算法的搜索范圍.然后,通過粒子蜂群算法種群序列是一個有限齊次馬爾科夫鏈和種群進化單調性的分析,驗證了本文所提算法的種群序列依概率1收斂于全局最優解集.最后,將本文所提算法應用于多個常見測試函數,并與經典蜂群算法、近年其他文獻改進蜂群算法進行了仿真對比研究,仿真結果表明本文所提算法確實加大了種群的分散度、擴寬了搜索范圍,從而具有更快的收斂速度和更高的尋優精度.

     

  • [1] Karaboga D, Basturk B. A comparative study of artificial bee colony algorithm. Applied Soft Computing, 2008, 8(1):687
    [4] Bao L, Zeng J C. Comparison and analysis of the selection mechanism in the artificial bee colony algorithm//Ninth International Conference on Hybrid Intelligent Systems. Shenyang, 2009:411
    [5] Alatas B. Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl, 2010, 37(8):5682
    [6] Chen S M, Sarosh A, Dong Y F. Simulated annealing based artificial bee colony algorithm for global numerical optimization. Appl Math Comput, 2012, 219(8):3575
    [7] KıRan M S, GüNdüZ M. A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Comput, 2013, 13(4):2188
    [8] El-Abd M. A hybrid ABC-SPSO algorithm for continuous function optimization//IEEE Symposium on Swarm Intelligence. Paris, 2011:1
    [9] Shi X H, Li Y W, Li H J, et al. An integrated algorithm based on artificial bee colony and particle swarm optimization//20106th International Conference on Natural Computation. Yantai, 2011:2586
    [10] Pereira A G C, Campos V S M. Multistage non homogeneous Markov chain modeling of the non homogeneous genetic algorithm and convergence results. Commun Stat Theory Methods, 2016, 45(6):1794
    [11] Sun S C, Liu H B. 6-particle swarm algorithm:convergence and applications//Swarm Intelligence and Bio-Inspired Computation, 2013:137
    [12] Stutzle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms. IEEE Trans Evol Comput, 2002, 6(4):358
  • 加載中
計量
  • 文章訪問數:  942
  • HTML全文瀏覽量:  357
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-05-14

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164