<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響

黃玉煒 王玉江 魏世丞 梁義 王博 黃威 徐濱士

黃玉煒, 王玉江, 魏世丞, 梁義, 王博, 黃威, 徐濱士. Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響[J]. 工程科學學報, 2018, 40(7): 849-856. doi: 10.13374/j.issn2095-9389.2018.07.011
引用本文: 黃玉煒, 王玉江, 魏世丞, 梁義, 王博, 黃威, 徐濱士. Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響[J]. 工程科學學報, 2018, 40(7): 849-856. doi: 10.13374/j.issn2095-9389.2018.07.011
HUANG Yu-wei, WANG Yu-jiang, WEI Shi-cheng, LIANG Yi, WANG Bo, HUANG Wei, XU Bin-shi. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites[J]. Chinese Journal of Engineering, 2018, 40(7): 849-856. doi: 10.13374/j.issn2095-9389.2018.07.011
Citation: HUANG Yu-wei, WANG Yu-jiang, WEI Shi-cheng, LIANG Yi, WANG Bo, HUANG Wei, XU Bin-shi. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites[J]. Chinese Journal of Engineering, 2018, 40(7): 849-856. doi: 10.13374/j.issn2095-9389.2018.07.011

Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響

doi: 10.13374/j.issn2095-9389.2018.07.011
基金項目: 

"十三五"裝備預研共用技術項目(404010205)

中國工程院咨詢研究項目(2017-XY-37)

國家自然科學基金資助項目(51675533,51701238,51705521)

詳細信息
  • 中圖分類號: TB34

Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites

  • 摘要: 研究了Co摻雜對還原氧化石墨烯(RGO)/Fe3O4復合材料結構、形貌和吸波性能的影響規律.采用一步水熱法分別制備RGO/Fe3O4和Co摻雜的RGO/Fe3O4復合材料,通過掃描電子顯微鏡、X射線衍射儀和X射線光電子能譜分析Co摻雜對復合材料的微觀形貌、相組成及表面元素價態的影響;利用矢量網絡分析儀測定兩種復合材料在2~18 GHz頻率范圍內的相對復介電常數和復磁導率,模擬計算了Co摻雜對RGO/Fe3O4復合吸波性能的影響規律.結果表明:部分Co參與了水熱反應生成了CoCO3、Co3O4和Co2O3,還有部分Co以單質形式存在,其通過正負電荷吸引機制,影響Fe3+在氧化石墨烯(GO)表面的配位,使得負載在還原氧化石墨烯(RGO)表面的Fe3O4納米顆粒部分遷移至RGO片層間;Co摻雜改善了復合材料的導電能力和磁損耗能力,使復合材料的吸波能力顯著增強.反射率模擬結果表明:摻雜后與摻雜前相比,當匹配厚度d=2.00 mm時,最大反射損耗提高3.44 dB,有效吸收頻帶拓寬2.88 GHz;當匹配厚度d=2.50 mm時,最大反射損耗提高8.45 dB,有效吸收頻帶拓寬2.73 GHz.Co摻雜對RGO/Fe3O4復合材料的結構和形貌有顯著影響,并有效改善復合材料的吸波性能.

     

  • [6] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry. Chem Soc Rev, 2010, 39(8):3157
    [8] Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15):12997
    [9] Zhang X J, Wang G S, Cao W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces, 2014, 6(10):7471
    [10] Yang H B, Ye T, Lin Y, et al. Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite. Appl Surf Sci, 2015, 357:1289
    [11] Qu B, Zhu C L, Li C Y, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces, 2016, 8(6):3730
    [13] Xu Y J, Wang Q, Cao Y F, et al. Preparation of a reduced graphene oxide/SiO2/Fe3O4 UV-curing material and its excellent microwave absorption properties. RSC Adv, 2017, 7(29):18172
    [14] Li X H, Yi H B, Zhang J W, et al. Fe3O4-graphene hybrids:nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J Nanopart Res, 2013, 15(3):1472
    [15] Huang W, Zuo Z J, Han P D, et al. XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods. J Electron Spectrosc Relat Phenom, 2009, 173(2-3):88
    [16] Xu M, Ilton E S, Engelhard M H, et al. Heterogeneous growth of cadmium and cobalt carbonate phases at the (10-14) calcite surface. Chem Geol, 2015, 397:24
    [18] Wu M Z, Zhang Y D, Hui S, et al. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl Phys Lett, 2002, 80(23):4404
    [19] Snoek J L. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica, 1948, 14(4):207
    [20] Zuo W L, Qiao L, Chi X, et al. Complex permeability and microwave absorption properties of planar anisotropy Ce2Fe17N3-δ particles. J Alloy Compd, 2011, 509(22):6359
    [21] Manjón F J, Mari B, Serrano J, et al. Silent Raman modes in zinc oxide and related nitrides. J Appl Phys, 2005, 97(5):053516
    [23] Wei X J, Jiang J T, Zhen L, et al. Synthesis of Fe/SiO2 composite particles and their superior electromagnetic properties in microwave band. Mater Lett, 2010, 64(1):57
    [24] Kim S S, Jo S B, Gueon K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans Magn, 1991, 27(6):5462
  • 加載中
計量
  • 文章訪問數:  870
  • HTML全文瀏覽量:  332
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-09

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164