<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋅電積過程中錳元素對鋁陰極的電化學行為影響

張小軍 黃惠 董勁 郭忠誠

張小軍, 黃惠, 董勁, 郭忠誠. 鋅電積過程中錳元素對鋁陰極的電化學行為影響[J]. 工程科學學報, 2018, 40(7): 800-807. doi: 10.13374/j.issn2095-9389.2018.07.005
引用本文: 張小軍, 黃惠, 董勁, 郭忠誠. 鋅電積過程中錳元素對鋁陰極的電化學行為影響[J]. 工程科學學報, 2018, 40(7): 800-807. doi: 10.13374/j.issn2095-9389.2018.07.005
ZHANG Xiao-jun, HUANG Hui, DONG Jin, GUO Zhong-cheng. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning[J]. Chinese Journal of Engineering, 2018, 40(7): 800-807. doi: 10.13374/j.issn2095-9389.2018.07.005
Citation: ZHANG Xiao-jun, HUANG Hui, DONG Jin, GUO Zhong-cheng. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning[J]. Chinese Journal of Engineering, 2018, 40(7): 800-807. doi: 10.13374/j.issn2095-9389.2018.07.005

鋅電積過程中錳元素對鋁陰極的電化學行為影響

doi: 10.13374/j.issn2095-9389.2018.07.005
基金項目: 

云南省自然科學基金資助項目(20113FA012,20113FB022)

國家自然科學基金資助項目(51504111)

詳細信息
  • 中圖分類號: TF813

Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning

  • 摘要: 傳統濕法煉鋅工藝采用純鋁板作為陰極,但隨著鋅精礦品位的降低,電解液中雜質離子含量增大,造成陰極腐蝕消耗增加.本文以鋁錳合金為研究對象,研究錳作為添加元素,與鋁形成良好鋁錳合金陰極材料的電化學行為,進一步提高鋁陰極的耐蝕性和電催化活性.采用交流阻抗、陰極極化曲線、恒電流極化曲線、塔菲爾曲線等分析方法,探討不同Mn元素含量對鋁錳合金在40℃恒溫條件,Zn2+ 65 g·L-1和H2SO4 150 g·L-1溶液中電化學行為的影響.研究結果表明:相比純鋁電極,添加Mn元素的鋁錳合金電極的耐蝕性普遍提高,腐蝕電流均減小;隨著Mn含量的增加,腐蝕電流逐步降低,腐蝕電位與Mn含量增加無明顯變化規律;當Mn質量分數為1.5%時腐蝕電流達最低(1.11 mA·cm-2),腐蝕電位最小(-1.0954 V);零電勢下,表觀電流密度i0受Mn元素的添加影響顯著,i0隨Mn含量增加呈現出先增大后減小的趨勢,在Mn質量分數1.5%時達到最大值3.7462×10-16 mA·cm-2,遠大于純鋁電極4.8027×10-33 mA·cm-2,整體變化幅度明顯,電極的電催化活性得到提高;不同電流密度下的析氫過電位和純鋁電極的整體接近,電化學過程均為電化學傳質步驟控制.綜合考慮電極材料的耐蝕性和電催化活性,含Mn質量分數1.5%的鋁錳合金可作為理想的電積鋅陰極使用.

     

  • [1] Tański T, Pakieła W, Janicki D, et al. Properties of the aluminium alloy EN AC-51100 after laser surface treatment. Arch Metall Mater, 2016, 61(1):199
    [2] Saleema N, Gallant D. Atmospheric pressure plasma oxidation of AA6061-T6 aluminum alloy surface for strong and durable adhesive bonding applications. Appl Surf Sci, 2013, 282:98
    [3] Lee H J, Yang I H, Kim S K, et al. In vivo comparison between the effects of chemically modified hydrophilic and anodically oxidized titanium surfaces on initial bone healing. J Periodontal Implant Sci, 2015, 45(3):94
    [6] Bhatnagar A, Kumar E, Sillanpää M. Fluoride removal from water by adsorption——a review. Chem Eng J, 2011, 171(3):811
    [8] Lins V F C, Castro M M R, Araújo C R, et al. Effect of nickel and magnesium on zinc electrowinning using sulfate solutions. Braz J Chem Eng, 2011, 28(3):475
    [9] Zhang W, Robichaud M, Ghali E, et al. Electrochemical behavior of mesh and plate oxide coated anodes during zinc electrowinning. Trans Nonferrous Met Soci China, 2016, 26(2):589
    [10] Gu P, Pascual R, Shirkhanzadeh M, et al. The influence of Al substrate intermetallic precipitates on zinc electrodeposition. Hydrometallurgy, 1995, 37(3):267
    [11] Mackinnon D J, Brannen J M, Fenn P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte. J Appl Electrochem, 1987, 17(6):1129
    [12] Gu P, Pascual R, Shirkhanzadeh M, et al. The influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes. Hydrometallurgy, 1995, 37(3):283
    [13] Nusen S, Yottawee N, Daopiset S, et al. The role of surface grinding, intermetallic precipitates and halide ions on zinc deposition and adhesion on aluminium cathode in zinc electrowinning. Hydrometallurgy, 2012, 113-114:143
    [17] Chamoun M, Skarman B, Vidarsson H, et al. Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodes. J Electrochem Soc, 2017, 164(6):A1251
    [18] Calle-Vallejo F, Koper M T M, Bandarenka A S. Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem Soc Rev, 2013, 42(12):5210
  • 加載中
計量
  • 文章訪問數:  946
  • HTML全文瀏覽量:  352
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-07-17

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164