<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高錳鋼高速沖擊時剪切區TRIP行為的準原位分析

林穎 王強 楊平

林穎, 王強, 楊平. 高錳鋼高速沖擊時剪切區TRIP行為的準原位分析[J]. 工程科學學報, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
引用本文: 林穎, 王強, 楊平. 高錳鋼高速沖擊時剪切區TRIP行為的準原位分析[J]. 工程科學學報, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
LIN Ying, WANG Qiang, YANG Ping. Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression[J]. Chinese Journal of Engineering, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008
Citation: LIN Ying, WANG Qiang, YANG Ping. Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression[J]. Chinese Journal of Engineering, 2018, 40(6): 703-713. doi: 10.13374/j.issn2095-9389.2018.06.008

高錳鋼高速沖擊時剪切區TRIP行為的準原位分析

doi: 10.13374/j.issn2095-9389.2018.06.008
基金項目: 

國家自然科學基金資助項目(51271028)

詳細信息
  • 中圖分類號: TG142.3

Quasi-in-situ analysis of TRIP behaviors in shear zones of high-manganese steel specimen under dynamic compression

  • 摘要: 利用背散射電子衍射技術對高速沖擊前后高錳鋼樣品強制剪切區域的晶粒進行準原位觀察,分析了剪切區域不同位置晶粒的相變情況,并借助有限元模擬及受力計算對不同晶粒相變程度差異的原因做了進一步分析.結果表明,在高速變形下,應力應變水平、奧氏體取向及晶粒間的相互作用共同影響TRIP行為:應力應變水平越高,相變程度越大;由于帽型樣中剪切應力的存在,相比于近〈111〉取向奧氏體,近〈100〉和近〈110〉取向奧氏體相變程度更大,近〈110〉取向相變程度最大.具有有利取向的奧氏體,晶粒尺寸越大,其相變行為受周圍晶粒影響越小,越容易充分相變;具有有利取向的長條狀奧氏體晶粒,若其兩側晶粒難相變,則該晶粒相變將受到束縛;帶有尖角的晶粒,變形時應力集中難以釋放,易發生相變;當晶粒的孿生分力大于滑移,但其最大和次大的孿生分力相差不大,可能導致在這兩個方向孿生互相競爭,反而不易相變.高速變形時體心馬氏體多在晶界應力集中處產生,很少在晶粒內部大量產生,形態多為細片狀,變體選擇強.

     

  • [1] Sugimoto K, Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int, 1992, 32(12):1311
    [2] Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11):1391
    [3] Sakuma Y, Matlock D K, Krauss G. Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si -1.5 Pct Mn and 4 Pct Ni:Part Ⅱ. Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation. Metall Trans A, 1992, 23(4):1233
    [4] Frommeyer G, Brüx U, Neumann P. Supra-ductile and highstrength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2003, 43(3):438
    [5] Gong X, Fan J L, Huang B Y, et al. Microstructure characteristics and a deformation mechanism of fine-grained tungsten heavy alloy under high strain rate compression. Mater Sci Eng A, 2010, 527(29-30):7565
    [6] Lichtenfeld J A, Van Tyne C J, Mataya M C. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall Mater Trans A, 2006, 37(1):147
    [7] Talonen J, Hänninen H, Nenonen P, et al. Effect of strain rate on the strain-induced γ→α'-martensitic transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A, 2005, 36(2):421
    [8] Sun X R, Wang H Z, Yang P, et al. Mechanical behaviors and micro-shear structures of metals with different structures by highspeed compression. Acta Metall Sin, 2014, 50(4):387
    [9] Sun X R, Wang H Z, Yang P, et al. Behavior of transformationinduced plasticity during adiabatic shear bands formation in high manganese steels. Steel Res Int, 2014, 85(10):1465
    [10] Li J, Yang H Y, Yang P. Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation. Mater Lett, 2014, 134:180
    [11] Wang H Z, Sun X R, Yang P, et al. Analysis of the transformation-induced plasticity effect during the dynamic deformation of high-manganese steel. J Mater Sci Technol, 2015, 31(2):191
    [12] Wang H Z, Sun X R, Yang P, et al. Inspection of adiabatic shear bands in high manganese TRIP steels. Mater Sci Forum, 2013, 753:72
    [14] Park K K, Oh S T, Baeck S M, et al. In-situ deformation behavior of retained austenite in TRIP steel. Mater Sci Forum, 2002, 408-412:571
    [15] Li W S, Gao H Y, Nakashima H, et al. In-situ study of the deformation-induced rotation and transformation of retained austenite in a low-carbon steel treated by the quenching and partitioning process. Mater Sci Eng A, 2016, 649:417
    [16] Li N, Wang Y D, Liu W J, et al. In situ X-ray micro diffraction study of deformation-induced phase transformation in 304 austenitic stainless steel. Acta Mater, 2014, 64:12
    [17] Yang H Y, Li J, Yang P. The change of orientation relationships between austenite and α'-martensitic during deformation in high manganese TRIP steel. Acta Metall Sin, 2015, 28(3):289
    [18] Choi J Y, Lee J, Lee K, et al. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel. Mater Sci Eng A, 2016, 666:280
    [19] Das A, Tarafder S, Chakraborti P C. Estimation of deformation induced martensitic in austenitic stainless steels. Mater Sci Eng A, 2011, 529:9
    [20] Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensitic during tensile deformation of 304 LN stainless steel. Mater Sci Eng A, 2008, 486(1-2):283
    [21] He Z P, He Y L, Ling Y T, et al. Effect of strain rate on deformation behavior of TRIP steels. J Mater Process Technol, 2012, 212(10):2141
    [22] Yang P, Liu T Y, Lu F Y, et al. Orientation dependence of martensitic transformation in high Mn TRIP/TWIP steels. Steel Res Int, 2012, 83(4):368
    [25] Zhang W N, Liu Z Y, Zhang Z B, et al. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope. Mater Lett, 2013, 91:158
    [26] Eskandari M, Zarei-Hanzaki A, Mohtadi-Bonab M A, et al. Grain-orientation-dependent of γ-ε-α' transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel. Mater Sci Eng A, 2016, 674:514
  • 加載中
計量
  • 文章訪問數:  704
  • HTML全文瀏覽量:  242
  • PDF下載量:  18
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-10-23

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164