<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

集總干擾下六旋翼飛行器的軌跡跟蹤控制

丁力 吳洪濤 李興成

丁力, 吳洪濤, 李興成. 集總干擾下六旋翼飛行器的軌跡跟蹤控制[J]. 工程科學學報, 2018, 40(5): 622-628. doi: 10.13374/j.issn2095-9389.2018.05.013
引用本文: 丁力, 吳洪濤, 李興成. 集總干擾下六旋翼飛行器的軌跡跟蹤控制[J]. 工程科學學報, 2018, 40(5): 622-628. doi: 10.13374/j.issn2095-9389.2018.05.013
DING Li, WU Hong-tao, LI Xing-cheng. Trajectory tracking control for an unmanned hexrotor with lumped disturbance[J]. Chinese Journal of Engineering, 2018, 40(5): 622-628. doi: 10.13374/j.issn2095-9389.2018.05.013
Citation: DING Li, WU Hong-tao, LI Xing-cheng. Trajectory tracking control for an unmanned hexrotor with lumped disturbance[J]. Chinese Journal of Engineering, 2018, 40(5): 622-628. doi: 10.13374/j.issn2095-9389.2018.05.013

集總干擾下六旋翼飛行器的軌跡跟蹤控制

doi: 10.13374/j.issn2095-9389.2018.05.013
基金項目: 

常州市應用基礎研究計劃資助項目(CJ20179017)

江蘇省基礎研究計劃(自然科學基金)資助項目(BK20170315)

詳細信息
  • 中圖分類號: TP242

Trajectory tracking control for an unmanned hexrotor with lumped disturbance

  • 摘要: 針對復雜集總干擾下六旋翼飛行器軌跡跟蹤控制問題,給出了混合積分反步法控制與線性自抗擾控制的控制算法. 首先,通過牛頓-歐拉方程建立六旋翼飛行器的非線性動力學模型,并剖析系統輸入輸出的數學關系. 其次,根據六旋翼飛行器動力學模型的特點,將其分為位置與姿態兩個控制環. 位置環采用積分反步法控制理論設計控制器,通過引入積分項來提高系統的抗干擾能力,消除軌跡跟蹤的靜態誤差;姿態環采用線性自抗擾控制技術設計控制器,通過線性擴張觀測器估計和補償集總干擾影響,提高系統的魯棒性. 最后,通過2組仿真算例和1組飛行試驗驗證了本文所提飛行控制算法的有效性. 研究結果表明:該控制算法對集總干擾有較好的抑制作用,能夠使六旋翼飛行器既快又穩地跟蹤上參考軌跡,具有一定的工程應用價值.

     

  • [1] Toledo J, Acosta L, Perea D, et al. Stability and performance analysis of unmanned aerial vehicles:quadrotor against Hexrotor. IET Control Theory Appl, 2015, 9(8):1190
    [2] Faessler M, Fontana F, Forster C, et al. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. J Field Robot, 2016, 33(4):431
    [3] Liu Y P, Li X Y, Wang T M, et al. Quantitative stability of quadrotor unmanned aerial vehicles. Nonlinear Dyn, 2017, 87(3):1819
    [4] Ding L, Ma R, Wu H T, et al. Yaw control of an unmanned aerial vehicle helicopter using linear active disturbance rejection control. Proc Inst Mech Eng Part I J Syst Control Eng, 2017, 231(6):427
    [5] Panomrattanarug B, Higuchi K, Mora-Camino F. Attitude control of a quadrotor aircraft using LQR state feedback controller with full order state observer//2013 Proceedings of SICE Annual Conference (SICE). Nagoya, 2013:2041
    [6] Alexis K, Nikolakopoulos G, Tzes A. Model predictive quadrotor control:attitude, altitude and position experimental studies. IET Control Theory Appl, 2012, 6(12):1812
    [7] Reza Dharmayanda H, Budiyono A, Kang T. State space identification and implementation of H∞ control design for small-scale helicopter. Aircr Eng Aerospace Technol, 2010, 82(6):340
    [8] Basri M A M, Husain A R, Danapalasingam K A. Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. J Intell Rob Syst, 2015, 79(2):295
    [10] Kumaz S, Cetin O, Kaynak O. Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst Appl, 2010, 37(2):1229
    [12] Liu Y P, Chen C, Wu H T, et al. Structural stability analysis and optimization of the quadrotor unmanned aerial vehicles via the concept of Lyapunov exponents. Int J Adv Manuf Technol, 2018, 94(9-12):3217
    [13] Bouchoucha M, Seghour S, Osmani H, et al. Integral backstepping for attitude tracking of a quadrotor system. Elektronika ir Elektrotechnika, 2011, 116(10):75
    [14] Babaei R, Ehyaei A F. Robust backstepping control of a quadrotor UAV using extended kalman bucy filter. Int J Mechatronics, Electrical Comput Technol, 2015, 5(16):2276
    [15] Gao Z Q. Active disturbance rejection control:a paradigm shift in feedback control system design//Proceedings of 2006 American Control Conference. Minneapolis, 2006:2399
    [16] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning//Proceedings of the 2003 American Control Conference. Denver, 2006:4989
    [18] Asadi F, Abut N. ITAE criterion based controller for buck converter. Int J Adv Appl Sci, 2017, 4(1):15
    [19] Gadewadikar J, Lewis F L, Subbarao K, et al. H-infinity static output-feedback control for rotorcraft. J Intell Rob Syst, 2009, 54(4):629
    [20] Dong W, Gu G Y, Zhu X Y, et al. Development of a quadrotor test bed-modelling, parameter identification, controller design and trajectory generation. Int J Adv Rob Syst, 2015, 12(2):7
  • 加載中
計量
  • 文章訪問數:  730
  • HTML全文瀏覽量:  320
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-08-18

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164