<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

有機抑制劑SDD與BX在銅活化閃鋅礦表面的競爭吸附機制

羅德強 劉建 王瑜 曾勇

羅德強, 劉建, 王瑜, 曾勇. 有機抑制劑SDD與BX在銅活化閃鋅礦表面的競爭吸附機制[J]. 工程科學學報, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
引用本文: 羅德強, 劉建, 王瑜, 曾勇. 有機抑制劑SDD與BX在銅活化閃鋅礦表面的競爭吸附機制[J]. 工程科學學報, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
LUO De-qiang, LIU Jian, WANG Yu, ZENG Yong. Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite[J]. Chinese Journal of Engineering, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003
Citation: LUO De-qiang, LIU Jian, WANG Yu, ZENG Yong. Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite[J]. Chinese Journal of Engineering, 2018, 40(5): 540-547. doi: 10.13374/j.issn2095-9389.2018.05.003

有機抑制劑SDD與BX在銅活化閃鋅礦表面的競爭吸附機制

doi: 10.13374/j.issn2095-9389.2018.05.003
基金項目: 

云南省青年人才培養基金資助項目(KKSY201421110)

云銅校企預研基金資助項目(KKZ4201521003)

國家自然科學基金資助項目(51764037,51704135)

詳細信息
  • 中圖分類號: TD952

Competitive adsorption mechanism of organic depressant SDD with BX on copper-activated sphalerite

  • 摘要: 通過單礦物浮選試驗揭示了有機抑制劑SDD對銅活化閃鋅礦的抑制情況. 在此基礎上,采用Zeta電位測試、Versa STAT電化學工作站的局部交流阻抗(LEIS)測試、前線軌道理論計算對SDD和BX(丁基黃藥)在銅活化閃鋅礦表面的競爭吸附機理進行了研究. 浮選試驗結果表明:SDD是一種銅鋅分離的高效抑制劑,能夠有效的抑制閃鋅礦,而黃銅礦幾乎不受影響;此外,還發現SDD具有用量少且十分敏感的特性,在pH為10,SDD為4.0×10-5 mol·L-1的最佳條件下,能夠將銅活化閃鋅礦的回收率降低至16.59%,而黃銅礦的回收率為81.64%. Zeta電位和局部交流阻抗(LEIS)分析表明:SDD不但能夠占據銅活化閃鋅礦表面的活化位點,而且其吸附能力強于BX,這極大的降低了BX在銅活化閃鋅礦表面的吸附量,從而對銅活化閃鋅礦表現出良好的抑制作用. 前線軌道理論計算進一步證實SDD與銅活化閃鋅礦作用能力強于BX.

     

  • [1] Jiao F, Qin W Q, Liu R Z, et al. Adsorption mechanism of 2-mercaptobenzothiazole on chalcopyrite and sphalerite surfaces:Ab initio, and spectroscopy studies. Trans Nonferrous Met Soc China, 2015, 25(7):2388
    [4] Liu J, Wen S M, Deng J S, et al. DFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copper. Appl Surf Sci, 2014, 311:258
    [5] Liu J, Wen S M, Chen X M, et al. DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface. Miner Eng, 2013, 46-47:1
    [6] Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface. Surf Sci, 2005, 576(1-3):98
    [7] Ekmekçi Z, Aslan A, Hassoy H. Effects of EDTA on selective flotation of sulphide minerals. Physicochem Problems Miner Process, 2004, 38:79
    [8] Huang P, Cao M L, Liu Q. Selective depression of sphalerite by chitosan in differential Pb/Zn flotation. Int J Miner Process, 2013, 122:29
    [10] Qin W Q, Jiao F, Sun W, et al. Effects of sodium salt of N, N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf A:Physicochem Eng Aspects, 2013, 421:181
    [14] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros Sci, 2011, 53(2):850
    [15] Long X H, Chen J H, Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules:a DFT study. Appl Surf Sci, 2016, 370:11
    [16] Long X H, Chen Y, Chen J H, et al. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces:a DFT study. Appl Surf Sci, 2016, 389:103
    [18] Wang J Y, Liu Q X, Zeng H B. Understanding copper activation and xanthate adsorption on sphalerite by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and in situ scanning electrochemical microscopy. J Phys Chem C, 2013, 117(39):20089
    [19] Fukui K, Yonezawa T, Nagata C, et al. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J Chem Phys, 1954, 22(8):1433
  • 加載中
計量
  • 文章訪問數:  811
  • HTML全文瀏覽量:  382
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-09-19

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164