<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電弧焊接數值模擬中熱源模型的研究與發展

朱志明 符平坡 楊中宇 郭吉昌

朱志明, 符平坡, 楊中宇, 郭吉昌. 電弧焊接數值模擬中熱源模型的研究與發展[J]. 工程科學學報, 2018, 40(4): 389-396. doi: 10.13374/j.issn2095-9389.2018.04.001
引用本文: 朱志明, 符平坡, 楊中宇, 郭吉昌. 電弧焊接數值模擬中熱源模型的研究與發展[J]. 工程科學學報, 2018, 40(4): 389-396. doi: 10.13374/j.issn2095-9389.2018.04.001
ZHU Zhi-ming, FU Ping-po, YANG Zhong-yu, GUO Ji-chang. Research and development of a heat-source model in numerical simulations for the arc welding process[J]. Chinese Journal of Engineering, 2018, 40(4): 389-396. doi: 10.13374/j.issn2095-9389.2018.04.001
Citation: ZHU Zhi-ming, FU Ping-po, YANG Zhong-yu, GUO Ji-chang. Research and development of a heat-source model in numerical simulations for the arc welding process[J]. Chinese Journal of Engineering, 2018, 40(4): 389-396. doi: 10.13374/j.issn2095-9389.2018.04.001

電弧焊接數值模擬中熱源模型的研究與發展

doi: 10.13374/j.issn2095-9389.2018.04.001
基金項目: 

鐵道部科技研究開發計劃重大資助項目(2008G001-C)

國家自然科學基金資助項目(51075231)

詳細信息
  • 中圖分類號: TG402

Research and development of a heat-source model in numerical simulations for the arc welding process

  • 摘要: 焊接過程的數值模擬作為一種有效的計算手段,在焊接溫度場及殘余應力分布的評價中獲得了廣泛應用,而焊接熱源模型的選擇及模型參數的確定直接影響到計算和評價結果的準確性.本文通過對近年來常用的電弧焊接熱源模型進行梳理,介紹了其研究進展,分析了不同熱源模型的特點及適用性.高斯面熱源模型和雙橢球體熱源模型作為基礎熱源模型,廣泛應用于較小尺寸工件和規則軌跡的焊接過程數值模擬,且具有較高的計算精度;簡化熱源模型和溫度替代型熱源模型多用于大厚工件的多層多道焊接及復雜軌跡焊接過程的數值模擬,能夠實現效率和精度的統一;多絲電弧焊接熱源較為復雜,采用修正后的雙橢球體疊加熱源模型,計算結果能保證一定的精度;結合型熱源模型對熔池形狀的描述更靈活,在深熔電弧焊的數值模擬中具有優勢.本文可為電弧焊接過程數值模擬的熱源模型選擇和模型參數確定提供有益參考.

     

  • [2] Huang X F, Liu Z W, Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin, 2013, 26(6):570
    [7] Pavelic V, Tanbakuchi R, Uyehara O A, et al. Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Weld J, 1969, 48(7):295
    [10] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B, 1984, 15(2):299
    [15] Azar A S, Ås S K, Akselsen O M. Determination of welding heat source parameters from actual bead shape. Comput Mater Sci, 2012, 54:176
    [17] Tekriwal P, Mazumder J. Finite element analysis of three-dimensional transient heat transfer in GMA welding. Weld J, 1988, 67(7):150s
    [20] Bae D H, Kim C H, Cho S Y, et al. Numerical analysis of welding residual stress using heat source models for the multi-pass weldment. KSME Int J, 2002, 16(9):1054
    [21] Kiyoshima S, Deng D A, Ogawa K, et al. Influences of heat source model on welding residual stress and distortion in a multipass J-groove joint. Comput Mater Sci, 2009, 46(4):987
    [22] Deng D A, Kiyoshima S, Ogawa K, et al. Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source. Nucl Eng Des, 2011, 241(1):46
    [27] Cho D W, Kiran D V, Song W H, et al. Molten pool behavior in the tandem submerged arc welding process. J Mater Process Technol, 2014, 214(11):2233
    [35] Keppas L K, Wimpory R C, Katsareas D E, et al. Combination of simulation and experiment in designing repair weld strategies:a feasibility study. Nucl Eng Des, 2010, 240(10):2897
    [36] Ohms C, Wimpory R C, Katsareas D E, et al. NET TG1:residual stress assessment by neutron diffraction and finite element modeling on a single bead weld on a steel plate. Int J Press Ves Pip, 2009, 86(1):63
    [38] Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. J Mater Process Technol, 1999, 9293:405
    [39] Zheng Z T, Shan P, Hu S S, et al. Numerical simulation of gas metal arc welding temperature field. China Weld, 2006, 15(4):55
  • 加載中
計量
  • 文章訪問數:  1068
  • HTML全文瀏覽量:  377
  • PDF下載量:  84
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-08-15

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164