Effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel in a Cl--containing solution
-
摘要: 利用動電位極化、電化學阻抗、恒電位極化以及恒電流極化等電化學測試手段,并結合掃描電鏡進行點蝕形態觀察,探究了含Cl-溶液中SO42-濃度對316L奧氏體不銹鋼的鈍化行為及點蝕行為的影響.結果表明,含Cl-溶液中SO42-的加入能夠使316L不銹鋼鈍化區變寬,使點蝕電位變正,維鈍電流密度降低,進而提高316L的耐點蝕能力.但是在點蝕發生后,隨著SO42-濃度的升高,點蝕內部和邊緣形態表現出更為復雜的趨勢,蝕坑的周長面積比明顯增大.Abstract: The effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel was investigated in a Cl--containing solution using potentiodynamic polarization tests, electrochemical impedance spectroscopy tests, potentiostatic polarization tests, and galvanostatic polarization tests. In addition, scanning electron microscopy was used to observe the pitting morphology. The results show that the increased SO42- concentration increases the passive region of 316L, makes the pitting potential more positive, and decreases the current density, indicating an improved pitting resistance. However, the pitting morphology shows a more complicated trend, and the roughness of the pits increases with the increased SO42- concentration after pitting occurred.
-
Key words:
- austenite stainless steel /
- sulphate ion /
- chloride ion /
- polarization /
- pitting
-
參考文獻
[2] Wang Q Y, Wang X Z, Luo H, et al. A study on corrosion behaviors of Ni-Cr-Mo laser coating, 316 stainless steel and X70 steel in simulated solutions with H2S and CO2. Surf Coat Technol, 2016, 291:250 [3] Hu X M, Neville A. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions——a systematic approach. Wear, 2009, 267(11):2027 [6] Al-Sulaiman S, Al-Shamari A, Al-Mithin A, et al. Assessing the possibility of hydrogen damage in crude oil processing equipment//NACE Corrosion 2010. San Antonio, 2010:10176 [8] He W, Knudsen O Ø, Diplas S. Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-. Corros Sci, 2009, 51(12):2811 [10] El Sherbini E E F, El Rehim S S A. Pitting corrosion of zinc in Na2SO4, solutions and the effect of some inorganic inhibitors. Corros Sci, 2000, 42(5):785 [11] Böhni H, Uhlig H H. Environmental factors affecting the critical pitting potential of aluminum. J Electrochem Soc, 1969, 116(7):906 [12] Pyun S I, Park J J. Fractal analysis of pit morphology of Inconel alloy 600 in sulphate, nitrate and bicarbonate ion-containing sodium chloride solution at temperatures of 25-100℃. J Solid State Electrochem, 2004, 8(5):296 [13] Pyun S I, Na K H, Lee W J, et al. Effects of sulfate and nitrate ion additives on pit growth of pure aluminum in 0.1 M sodium chloride solution. Corrosion, 2000, 56(10):1015 [16] Niu L B, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel. Corros Sci, 2015, 96:171 [18] Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim Acta, 2007, 52(27):7634 [19] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behavior of AISI 316 in alkaline media and the effect of pH:a combined electrochemical and analytical study. Electrochim Acta, 2010, 55(21):6174 [21] Frankel G S. Errata:"Pitting corrosion of metals. A review of the critical factors". J Electrochem Soc, 1998, 145(8):2970 [22] Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials——review. Corros Sci, 2015, 90:5 -

計量
- 文章訪問數: 774
- HTML全文瀏覽量: 369
- PDF下載量: 20
- 被引次數: 0