[8] |
Zhu T B, Li Y W, Jin S L, et al. Catalytic formation of one-dimensional nanocarbon and MgO whiskers in low carbon MgO-C refractories. Ceram Int, 2015, 41(3):3541
|
[19] |
Behera S, Sarkar R. Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory:an in-depth investigation. Ceram Int, 2016, 42(16):18484
|
[21] |
Benavidez E, Brandaleze E, Musante L, et al. Corrosion study of MgO-C bricks in contact with a steelmaking slag. Proc Mater Sci, 2015, 8:228
|
[24] |
White H E. Electrically fused magnesia. J Am Ceram Soc, 1938, 21(6):216
|
[27] |
Zhu T B, Li Y W, Jin S L, et al. Microstructure and mechanical properties of MgO-C refractories containing expanded graphite. Ceram Int, 2013, 39(4):4529
|
[28] |
Zhu T B, Li Y W, Sang S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories. Ceram Int, 2014, 40(3):4333
|
[30] |
Zhang S, Marriott N J, Lee W E. Thermochemistry and microstructures of MgO-C refractories containing various antioxidants. J Eur Ceram Soc, 2001, 21(8):1037
|
[32] |
Gokce A S, Gurcan C, Ozgen S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks. Ceram Int, 2008, 34(2):323
|
[34] |
Rymon-Lipinski T, Fichtner R, Benecke T. Study of the oxidation protection of MgO-C refractories by means of boron carbide. Steel Res Int, 1992, 63(11):493
|
[40] |
Campos K S, Silva G F B L E, Nunes E H M, et al. The influence of B 4 C and MgB2, additions on the behavior of MgO-C bricks. Ceram Int, 2012, 38(7):5661
|
[43] |
Aneziris C G, Hubalkova J, Barabas R. Microstructure evaluation of MgO-C refractories with TiO2-and Al-additions. J Eur Ceram Soc, 2007, 27(1):73
|
[49] |
Wei G P, Zhu B Q, Li X C, et al. Microstructure and mechanical properties of low-carbon MgO-C refractories bonded by an Fe nanosheet-modified phenol resin. Ceram Int, 2015, 41(1):1553
|
[50] |
Bag M, Adak S, Sarkar R. Study on low carbon containing MgO-C refractory:use of nano carbon. Ceram Int, 2012, 38(3):2339
|
[52] |
Tamura S, Ochiai T, Takanaga S, et al. Nano-tech refractories-1. The development of the nano structural matrix//Proceedings of UNITECR. Osaka, 2003, 3:517
|
[55] |
Bag M, Adak S, Sarkar R. Nano carbon containing MgO-C refractory:effect of graphite content. Ceram Int, 2012, 38(6):4909
|
[56] |
Behera S, Sarkar R. Low-carbon magnesia-carbon refractory:use of N220 nanocarbon black. Int J Appl Ceram Technol, 2014, 11(6):968
|
[57] |
Behera S, Sarkar R. Study on variation of graphite content in N220 nanocarbon containing low carbon MgO-C refractory. Ironmaking Steelmaking, 2016, 43(2):130
|
[60] |
Fuchimoto H, Hokki T, Asano K. Evaluation of ultra low carbon magnesia-carbon bricks//47th International Colloquium on Refractories. Aachen, 2004:59
|
[63] |
Hashemi B, Nemati Z A, Faghihi-Sani M A. Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks. Ceram Int, 2006, 32(3):313
|
[64] |
Wang S J, Jing X L, Wang Y, et al. High char yield of aryl boron-containing phenolic resins:the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab, 2014, 99:1
|
[65] |
Matsuo Y, Tanaka M, Yoshitomi J, et al. Effect of the carbon nanofiber addition on the mechanical properties of MgO-C brick//Proceedings of UNITECR. Kyoto, 2011:11
|
[66] |
Li L, Tang G S, He Z Y, et al. Influences of black carbon addition on mechanical performance of low-carbon MgO-C composite. J Iron Steel Res Int, 2010, 17(12):75
|
[67] |
Jansen H. Bonding of MgO-C bricks by catalytically activated resin. Millennium Steel Int, 2007:95
|