<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

脈沖激光亦或電子束輻照對SUS316L奧氏體不銹鋼中空位擴散的影響

楊蘇冰 楊占兵 王會

楊蘇冰, 楊占兵, 王會. 脈沖激光亦或電子束輻照對SUS316L奧氏體不銹鋼中空位擴散的影響[J]. 工程科學學報, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013
引用本文: 楊蘇冰, 楊占兵, 王會. 脈沖激光亦或電子束輻照對SUS316L奧氏體不銹鋼中空位擴散的影響[J]. 工程科學學報, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013
YANG Su-bing, YANG Zhan-bing, WANG Hui. Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel[J]. Chinese Journal of Engineering, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013
Citation: YANG Su-bing, YANG Zhan-bing, WANG Hui. Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel[J]. Chinese Journal of Engineering, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013

脈沖激光亦或電子束輻照對SUS316L奧氏體不銹鋼中空位擴散的影響

doi: 10.13374/j.issn2095-9389.2017.06.013
基金項目: 

國家自然科學基金資助項目(51471027)

2014年鋼鐵冶金新技術國家重點實驗室開放基金資助項目(KF14-03)

中央高校基本科研業務費

詳細信息
  • 中圖分類號: TL341

Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel

  • 摘要: 利用激光-超高壓電子顯微鏡系統在500℃對SUS316L奧氏體不銹鋼進行了電子束輻照和脈沖激光-電子束雙束同時輻照(以下簡稱:同時輻照),通過觀察和分析輻照后自由晶界處無空洞區域以及元素偏析,以電子束輻照結果為標準,對比研究了同時輻照對空位擴散的影響.結果表明:同時輻照后的無空洞區域寬度為48 ±16 nm,小于電子輻照的71 ±27 nm;不論在偏析程度還是偏析寬度上,同時輻照條件下Cr和Ni的偏析都小于對應的電子束輻照;同時輻照下空位的擴散通量僅為電子束輻照的45.7%.通過分析得出,和電子輻照相比,同時輻照促進了空位與間隙原子的再結合,限制空位向尾閭擴散,進而造成流入尾閭的空位數量減少,極大地抑制了輻照偏析與腫脹.脈沖激光-電子束雙束同時輻照可以為探索抑制腫脹方法提供新的思路.

     

  • [1] Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater, 2009, 385(2):217
    [3] Zinkle S J, Was G S. Materials challenges in nuclear energy. Acta Mater, 2013, 61(3):735
    [5] Zinkle S J, Ghoniem N M. Prospects for accelerated development of high performance structural materials. J Nucl Mater, 2011, 417(1):2
    [6] Garner F A, Toloczko M B, Sencer B H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J Nucl Mater, 2000, 276(1):123
    [7] Allen T R, Cole J I, Gan J, et al. Swelling and radiation-induced segregation in austentic alloys. J Nucl Mater, 2005, 342(1):90
    [8] Neustroev V S, Garner F A. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling. J Nucl Mater, 2009, 386-388:157
    [9] Porollo S I, Vorobjev A N, Konobeev Y V, et al. Swelling and void-induced embrittlement of austenitic stainless steel irradiated to 73-82 dpa at 335-365℃. J Nucl Mater, 1998, 258:1613
    [10] Armaki H G, Maruyama K, Yoshizawa M, et al. Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels. Mater Sci Eng A, 2008, 490(1):66
    [11] Garner F A, Black C A, Edwards D J. Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys. J Nucl Mater, 1997, 245(2):124
    [12] Wang X, Yan Q Z, Was G S, et al. Void swelling in ferriticmartensitic steels under high dose ion irradiation:exploring possible contributions to swelling resistance. Scr Mater, 2016, 112:9
    [13] Wang X, Monterrosa A M, Zhang F F, et al. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels. J Nucl Mater, 2015, 462:119
    [14] Hishinuma A, Katano Y, Shiraishi K. Dose and temperature dependence of void swelling in electron irradiated stainless steel. J Nucl Sci Technol, 1977, 14(10):723
    [15] Horiki M, Yoshiie T, Huang S S, et al. Effects of alloying elements on defect structures in the incubation period for void swelling in austenitic stainless steels. J Nucl Mater, 2013, 442(1):S813
    [16] Yoshiie T, Sato K, Cao X, et al. Defect structures before steadystate void growth in austenitic stainless steels. J Nucl Mater, 2012, 429(1):185
    [17] Yoshiie T, Cao X Z, Sato K, et al. Point defect processes during incubation period of void growth in austenitic stainless steels, Timodified 316SS. J Nucl Mater, 2011, 417(1):968
    [18] Kato T, Takahashi H, Izumiya M. Effects ofsystematic modification with oversized elements on void formation in 316L austenitic stainless steel under electron irradiation. Mater Trans JIM, 1991, 32(10):921
    [19] Sekio Y, Yamashita S, Sakaguchi N, et al. Effect ofadditional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels. Mater Trans, 2014, 55(3):438
    [21] Watanabe S, Takamatsu Y, Sakaguchi N, et al. Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J Nucl Mater, 2000, 283:152
    [22] Sekio Y, Yamashita S, Sakaguchi N, et al. Void denuded zone formation for Fe-15Cr-15Ni steel and PNC316 stainless steel under neutron and electron irradiations. J Nucl Mater, 2015, 458:355
    [23] Shaikh M A. Void denudation and grain boundary migration in ion-irradiated nickel. J Nucl Mater, 1992, 187(3):303
    [24] Watanabe S, Sakaguchi N, Hashimoto N, et al. Radiation-induced segregation accompanied by grain boundary migration in austenitic stainless steel. J Nucl Mater, 1996, 232(2):113
    [25] Was G S, Wharry J P, Frisbie B, et al. Assessment of radiationinduced segregation mechanisms in austenitic and ferritic-martensitic alloys. J Nucl Mater, 2011, 411(1):41
    [26] Damcott D L, Allen T R, Was G S. Dependence of radiation-induced segregation on dose, temperature and alloy composition in austenitic alloys. J Nucl Mater, 1995, 225:97
    [27] Millett P C, Rokkam S, El-Azab A, et al. Void nucleation and growth in irradiated polycrystalline metals:a phase-field model. Modell Simul Mater Sci Eng, 2009, 17(6):064003
    [28] Sakaguchi N, Watanabe S, Takahashi H. Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater, 2001, 49(7):1129
    [29] Yang Z B, Watanabe S. Dislocation loop formation under various irradiations of laser and/or electron beams. Acta Mater, 2013, 61(8):2966
  • 加載中
計量
  • 文章訪問數:  707
  • HTML全文瀏覽量:  233
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-09-23

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164