<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

冷卻速度對圓形加載路徑下A319鋁合金多軸疲勞特性的影響

戴禮權 何國球 葉赟 呂世泉 劉曉山 王其桂

戴禮權, 何國球, 葉赟, 呂世泉, 劉曉山, 王其桂. 冷卻速度對圓形加載路徑下A319鋁合金多軸疲勞特性的影響[J]. 工程科學學報, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009
引用本文: 戴禮權, 何國球, 葉赟, 呂世泉, 劉曉山, 王其桂. 冷卻速度對圓形加載路徑下A319鋁合金多軸疲勞特性的影響[J]. 工程科學學報, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009
DAI Li-quan, HE Guo-qiu, YE Yun, Lü Shi-quan, LIU Xiao-shan, WANG Qi-gui. Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions[J]. Chinese Journal of Engineering, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009
Citation: DAI Li-quan, HE Guo-qiu, YE Yun, Lü Shi-quan, LIU Xiao-shan, WANG Qi-gui. Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions[J]. Chinese Journal of Engineering, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009

冷卻速度對圓形加載路徑下A319鋁合金多軸疲勞特性的影響

doi: 10.13374/j.issn2095-9389.2017.06.009
基金項目: 

美國通用汽車公司資助項目(1314)

東北大學軋制技術及連軋自動化國家重點實驗室開放課題基金資助項目(2016008)

詳細信息
  • 中圖分類號: TG111.8

Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions

  • 摘要: 采用MTS809型電液伺服疲勞試驗機、掃描電鏡研究了不同冷卻速度對A319鋁合金圓形加載路徑下的疲勞特性.結果表明:當冷速為10℃·s-1時,材料中二次枝晶臂間距、硅顆粒及孔洞尺寸較冷速為0.1℃·s-1時要小.二次枝晶臂間距較小時,滯后回線面積小,材料應力應變近乎同相,且附加強化效果明顯.不同冷速條件下裂紋萌生位置不同,在冷速為10℃·s-1的材料中,裂紋在大硅顆粒處萌生,隨著冷速降低至0.1℃·s-1時,裂紋位于孔洞處萌生.對于A319鑄造鋁合金來說,冷速的變化對其軸向與切向循環特性并無直接影響,軸向表現為先硬化再軟化,切向表現為先硬化后穩定的趨勢.

     

  • [1] Mo D F, He G Q, Hu Z F, et al. Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy. Mat Sci Eng A, 2010, 527(15):3420
    [3] Suresh S. Fatigue of Materials. London:Cambridge University Press, 1998
    [5] McDowell D L. Multiaxial small fatigue crack growth in metals. Int J Fatigue, 1997, 19(93):127
    [6] Ha T K, Park W J, Ahn S, et al. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior. J Mater Processing Tech, 2002, 130:691
    [7] Yeh J W, Yuan S Y, Peng C H. A reciprocating extrusion process for producing hypereutectic Al-20wt.% Si wrought alloys. Mat Sci Eng A, 1998, 252(2):212
    [12] Wang Q G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A, 2003, 34(12):2887
    [13] Zhang B, Chen W, Poirier D R. Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy. Fatigue Fract Eng M, 2000, 23(5):417
    [14] Hosseini V A, Shabestari S G, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des, 2013, 50:7
    [15] Dobrzanski L A, Maniara R, Sokolowski J H. The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy. Arch Mater Sci, 2007, 28(2):105
    [16] Morrow J D. Cyclic plastic strain energy and fatigue of metals. Asme Stp, 1965, 378:45
    [17] Srivatsan T S, Al-Hajri M, Hannon W, et al. The strain amplitude-controlled cyclic fatigue, defomation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates. Mat Sci Eng A, 2004, 379(1):181
    [18] Li W, Chen Z H, Chen D, et al. Low-cycle fatigue behavior of SiCp/Al-Si composites produced by spray deposition. Mat Sci Eng A, 2010, 527(29):7631
    [19] Liu J X, Zhang Q, Zuo Z X, et al. Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue. Mat Sci Eng A, 2013, 574:186
  • 加載中
計量
  • 文章訪問數:  615
  • HTML全文瀏覽量:  219
  • PDF下載量:  16
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-08-24

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164