<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于過渡金屬氧化物載氧體的煤礦通風瓦斯處理性能

吳舉茂 蘇慶泉 武永健 楊海洋

吳舉茂, 蘇慶泉, 武永健, 楊海洋. 基于過渡金屬氧化物載氧體的煤礦通風瓦斯處理性能[J]. 工程科學學報, 2017, 39(6): 823-829. doi: 10.13374/j.issn2095-9389.2017.06.002
引用本文: 吳舉茂, 蘇慶泉, 武永健, 楊海洋. 基于過渡金屬氧化物載氧體的煤礦通風瓦斯處理性能[J]. 工程科學學報, 2017, 39(6): 823-829. doi: 10.13374/j.issn2095-9389.2017.06.002
WU Ju-mao, SU Qing-quan, WU Yong-jian, YANG Hai-yang. Performance of ventilation air methane combustion over transition metal oxide oxygen carriers[J]. Chinese Journal of Engineering, 2017, 39(6): 823-829. doi: 10.13374/j.issn2095-9389.2017.06.002
Citation: WU Ju-mao, SU Qing-quan, WU Yong-jian, YANG Hai-yang. Performance of ventilation air methane combustion over transition metal oxide oxygen carriers[J]. Chinese Journal of Engineering, 2017, 39(6): 823-829. doi: 10.13374/j.issn2095-9389.2017.06.002

基于過渡金屬氧化物載氧體的煤礦通風瓦斯處理性能

doi: 10.13374/j.issn2095-9389.2017.06.002
基金項目: 

北京市科技基金資助項目(Z131100005613045)

詳細信息
  • 中圖分類號: X752

Performance of ventilation air methane combustion over transition metal oxide oxygen carriers

  • 摘要: 采用反應管對基于過渡金屬氧化物載氧體的煤礦通風瓦斯(VAM)處理性能展開了研究.結果表明,經活化后的三種載氧體均能將CH4完全轉化為CO2,其活性順序為CuO60/γ-Al2O3 > NiO60/γ-Al2O3 > Fe2O360/γ-Al2O3;基于CuO60/γ-Al2O3的CH4轉化率隨空速的增加而減小,隨CuO負載量和床層溫度的升高而增大;煤礦通風瓦斯中的CH4濃度越低,CH4轉化率達到90%所需的床層溫度就越低;對活性物質低分散高負載的CuO60/γ-Al2O3和活性物質高分散低負載的CuO5.5/γ-Al2O3兩種CuO/γ-Al2O3系載氧體進行了比較,發現兩種載氧體的CH4轉化機理均包含有化學鏈燃燒和催化燃燒兩種機理,基于催化燃燒機理的CH4轉化率在一定溫度下存在極大值,當床層溫度高于該極大值溫度時,化學鏈燃燒對CH4轉化率的貢獻明顯大于催化燃燒對CH4轉化率的貢獻;相同條件下,CuO5.5/γ-Al2O3的初期活性優于Cu60/γ-Al2O3,但CuO60/γ-Al2O3的活性穩定性優于CuO5.5/γ-Al2O3.

     

  • [2] Karakurt I, Aydin G, Aydiner K. Mine ventilation air methane as a sustainable energy source. Renewable Sustainable Energy Rev, 2011, 15(2):1042
    [4] Gosiewski K, Pawlaczyk A, Jaschik M. Energy recovery from ventilation air methane via reverse-flow reactors. Energy, 2015, 92:13
    [5] Wang Y K, Man C B, Che D F. Catalytic combustion of ventilation air methane in a reverse-flow reactor. Energy Fuels, 2010, 24(9):4841
    [6] Liu Y, Wang S, Gao D N, et al. Influence of metal oxides on the performance of Pd/Al2O3, catalysts for methane combustion under lean-fuel conditions. Fuel Process Technol, 2013, 111:55
    [7] Zou X L, Rui Z B, Song S Q, et al. Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. J Catal, 2016, 338:192
    [8] Park J H, Ahn J H, Sim H I, et al. Low-temperature combustion of methane using PdO/Al2O3 catalyst:influence of crystalline phase of Al2O3 support. Catal Commun, 2014, 56:157
    [10] Fiuk M M, Adamski A. Activity of MnOx-CeO2 catalysts in combustion of low concentrated methane. Catal Today, 2015, 257:131
    [11] Setiawan A, Kennedy E M, Dlugogorski B Z, et al. The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal Today, 2015, 258:276
    [12] Sidwell R W, Zhu H Y, Kibler B A, et al. Experimental investigation of the activity and thermal stability of hexaaluminate catalysts for lean methane-air combustion. Appl Catal A Gen, 2003, 255(2):279
    [13] Tian T F, Zhan M C, Wang W D, et al. Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fe1-yGayO3-δ perovskite-type oxides. Catal Commun, 2009, 10(5):513
    [15] Zhang Y X, Doroodchi E, Moghtaderi B. Utilization of ventilation air methane as an oxidizing agent in chemical looping combustion. Energy Convers Manage, 2014, 85:839
    [17] Zheng X M, Su Q Q, Mi W L. Study of a Cu-based oxygen carrier based on a chemical looping combustion process. Energy Fuels, 2015, 29(6):3933
    [18] Morisset S, Aguillon F, Sizun M, et al. Wave-packet study of H 2 formation on a graphite surface through the Langmuir-Hinshelwood mechanism. J Chem Phys, 2005, 122(19):194702
    [19] Renuka N K, Shijina A V, Praveen A K, et al. Redox properties and catalytic activity of CuO/γ-Al2O3 meso phase. J Colloid Interface Sci, 2014, 434:195
  • 加載中
計量
  • 文章訪問數:  838
  • HTML全文瀏覽量:  328
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-08-18

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164