<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望

陳德平 侯柯屹 王立佳 張競揚

陳德平, 侯柯屹, 王立佳, 張競揚. 超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望[J]. 工程科學學報, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001
引用本文: 陳德平, 侯柯屹, 王立佳, 張競揚. 超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望[J]. 工程科學學報, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001
CHEN De-ping, HOU Ke-yi, WANG Li-jia, ZHANG Jing-yang. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space[J]. Chinese Journal of Engineering, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001
Citation: CHEN De-ping, HOU Ke-yi, WANG Li-jia, ZHANG Jing-yang. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space[J]. Chinese Journal of Engineering, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001

超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望

doi: 10.13374/j.issn2095-9389.2017.06.001
詳細信息
  • 中圖分類號: TU54

Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space

  • 摘要: 超級絕熱型防火材料,是一種具有納米孔隙結構及超低導熱系數的無機材料,可分為溶膠-凝膠法氣凝膠復合材料和氣相法氧化物納米粉末基材料兩種.其基礎組成氧化物為SiO2和更高熔點的Al2O3、ZrO2,且研究發現合適的復合組元比單組元在火災溫度下具有更好的耐熱穩定性.紅外遮光劑是顯著降低材料高溫導熱系數的關鍵組分,通過比紅外消光系數測定以及基于Mie散射理論等的數值計算為紅外遮光劑的合理選擇提供了依據.超級絕熱型防火材料,具有高效防火的特點,只要很小的厚度就能達到較高的耐火等級.隨著氣凝膠材料從超臨界干燥向常壓干燥的發展,以及超級絕熱型防火材料總體生產成本的降低,這種材料將在城市地下空間被動防火系統中發揮重要的作用.

     

  • [1] Broere W. Urban underground space:solving the problems of today's cities. Tunnelling Underground Space Technol, 2016, 55:245
    [3] Zhao J W, Peng F L, Wang T Q, et al. Advances in master planning of urban underground space (UUS) in China. Tunnelling Underground Space Technol, 2016, 55:290
    [8] Beard A, Carvel R. The Handbook of Tunnel Fire Safety. London:Thomas Telford, 2005
    [10] Hunt A J. Aerogel-a transparent, porous superinsulator//Materials:Performance and Prevention of Deficiencies and Failures:Proceedings of the Materials Engineering Congress. Atlanta, 1992:398
    [11] Lysenko V, Roussel P, Remaki B, et al. Study of nano-porous silicon with low thermal conductivity as thermal insulating material. J Porous Mater, 2000, 7(1):177
    [14] Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211):741
    [15] Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation:an overview. J Sol-Gel Sci Technol, 2012, 63(3):315
    [16] Wakili K G, Remhof A. Reaction of aerogel containing ceramic fibre insulation to fire exposure. Fire Mater, 2017, 41(1):29
    [17] Saliger R, Heinrich T, Gleissner T, et al. Sintering behaviour of alumina-modified silica aerogels. J Non-Cryst Solids, 1995, 186:113
    [19] Komarneni S, Roy R, Selvaraj U, et al. Nanocomposite aerogels:the SiO2-Al2O3 system. J Mater Res, 1993, 8(12):3163
    [20] Aravind P R, Mukundan P, Pillai P K, et al. Mesoporous silicaalumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous Mesoporous Mater, 2006, 96(1-3):14
    [21] Levin I, Brandon D. Metastable alumina polymorphs:crystal structures and transition sequences. J Am Ceram Soc, 1998, 81(8):1995
    [22] Zu G Q, Shen J, Wei X Q, et al. Preparation and characterization of monolithic alumina aerogels. J Non-Cryst Solids, 2011, 357(15):2903
    [23] Keysar S, Shter G E, Hazan Y D, et al. Heat treatment of alumina aerogels. Chem Mater, 1997, 9(11):2464
    [24] Mizushima Y, Hori M. Preparation of heat-resistant alumina aerogels. J Mater Res, 1993, 8(11):2993
    [26] Wang Q P, Li X L, Fen W P, et al. Synthesis of crack-free monolithic ZrO 2, aerogel modified by SiO2. J Porous Mater, 2014, 21(2):127
    [30] White S, Rasky D, Herlth P. Tough, lightweight, superinsulating aerogel/tile composites have potential industrial applications. Mater Technol,1999, 14(1):13
    [34] He J, Li X L, Su D, et al. High-strength mullite fibers reinforced ZrO 2-SiO2 aerogels fabricated by rapid gel method. J Mater Sci, 2015, 50(22):7488
    [36] Sheng C, Yu Y, Yu Y, et al. Microstructure and thermal characterization of multilayer insulation materials based on silica aerogels. J Inorg Mater, 2013, 28(7):790
    [38] Wei G S, Zhang X X, Yu F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. J Therm Sci, 2009, 18(2):142
    [39] Parmenter K E, Milstein F. Mechanical properties of silica aerogels. J Non-Cryst Solids, 1998, 223(3):179
    [40] Liao Y D, Wu H J, Ding Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J Sol-Gel Sci Technol, 2012, 63(3):445
    [41] Nelson R T. Effects of Pressure, Temperature and Gel Thickness on the Kinetics of Supercritical CO2 Drying of Silica Alcogel[Dissertation]. Massachusetts:Tufts University, 2014
    [42] Yorov K E, Sipyagina N A, Baranchikov A E, et al. SiO2-TiO2 binary aerogels:synthesis in new supercritical fluids and study of thermal stability. Russian J Inorg Chem, 2016, 61(11):1339
    [43] Widipedia. Critical Point (thermaodynamics),[2017-02-24]. https://en.wikipedia.org/wiki/Critical_point_%28thermodynamics%29
    [44] Rao A V, Pajonk G M, Bhagat S D, et al. Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n. J NonCryst Solids, 2004, 350:216
    [45] Land V D, Harris T M, Teeters D C. Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst Solids, 2001, 283(1-3):11
    [47] Abe H, Abe I, Sato K, et al. Dry powder processing of fibrous fumed silica compacts for thermal insulation. J Am Ceram Soc, 2005, 88(5):1359
    [49] Mortimer M D, Cawley A J, Matthews T M. Microporous Thermal Insulation Material:United States Patent, 20070003751.2007-1-4
    [52] STM International. Standard Specification for Microporous Thermal Insulation (2014)[2017-02-22]. https://compass.astm.org/download/C1676C1676M.798.pdf
    [56] Boes U R, Ortiz L, Roderick K, et al. Method of Compacting A Fumed Metal Oxide-Containing Composition:United States Patent, 6099749.2000-8-8
    [57] McWilliams J A, Morgan D E, Jackson J D J. Method of Manufacturing A Microporous Thermally Insulating Roof:United States Patent, 4925584.1990-5-15
    [58] Gliem S, Kleinschmit P, Schwarz R. Process for the Production of Binder-Free Press-Molded Heat-Insulating Parts:United States Patent, 4529532.1985-7-16
    [59] Kratel G, Katzer H. Shaped Heat-Insulating Body and Process of Making the Same:United States Patent, 4985163.1991-1-15
    [60] Naito M, Kondo A, Yokoyama T. Applications of comminution techniques for the surface modification of powder materials. Iron Steel Inst Jpn Int, 1993, 33(9):915
    [61] Naito M, Abe H, Nogi K, et al. Method and Apparatus for Processing Powder and Method of Manufacturing Porous Granulated Substance:United States Patent, 20070228201.2007-10-4
    [68] Çengel Y A. Heat Transfer:A Practical Approach. 2nd Ed. New York:MacGraw-Hill, 2003
    [69] Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids, 1995, 186:291
    [71] Lee D, Stevens P C, Zeng S Q, et al. Thermal characterization of carbon-opacified silica aerogels. J Non-Cryst Solids, 1995, 186:285
    [72] Wang J, Kuhn J, Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids, 1995, 186:296
    [76] Zhao J J, Duan Y Y, Wang X D, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int J Therm Sci, 2013, 70:54
    [77] Wang X D, Sun D, Duan Y Y, et al. Radiative characteristics of opacifier-loaded silica aerogel composites. J Non-Cryst Solids, 2013, 375:31
    [78] Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int J Heat Mass Transfer, 2013, 58(1-2):540
    [80] Feng J P, Chen D P, Ni W, et al. Study of IR absorption properties of fumed silica-opacifier composites. J Non-Cryst Solids, 2010, 356(9-10):480
  • 加載中
計量
  • 文章訪問數:  687
  • HTML全文瀏覽量:  271
  • PDF下載量:  31
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-02-24

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164