[1] |
Fukaya M. Material properties of Fe-Cr-Al alloy foil for metal support. J Mater Manuf, 1997, 106:5
|
[2] |
Inoue Y, Kikuchi M, Tendo M, et al. Development of heat resistant stainless steel NSSCⓇ 21M for catalysis substrate of motorcycle muffler. Nippon Steel Tech Rep, 2010(99):45
|
[3] |
Emmerich K. The use of rapidly solidified ribbons in automotive exhaust gas catalyst substrates. Mater Sci Eng A, 1991, 134:1016
|
[4] |
Rivlin V G, Raynor G V. Phase equilibria in iron ternary alloys 3:critical evaluation of constitution of aluminium-chromium-iron system. Int Met Rev, 1980, 25(1):139
|
[5] |
Hall E O, Algie S H. The sigma phase. Int Mater Rev, 1966, 11(1):61
|
[6] |
Premachandra K, Cartie M B, Eric R H. Effect of stabilising elements on formation of σ phase in experimental ferritic stainless steels containing 39%Cr. Mater Sci Technol, 1992, 8(5):437
|
[7] |
Zubchenko A S. σ-phase formation in chromium ferritic steels. Met Sci Heat Treat, 1982, 24(4):274
|
[8] |
Schaeffler A L. Constitution diagram for stainless-steel weld metal. 2:Schaeffler diagram. Met Prog Databook, 1974, 106(1):227
|
[9] |
Konosu S, Mashiba H, Takeshima M, et al. Effects of pretest aging on creep crack growth properties of type 308 austenitic stainless steel weld metals. Eng Failure Anal, 2001, 8(1):75
|
[10] |
Reis G S, Jorge Jr A M, Balancin O. Influence of the microstructure of duplex stainless steels on their failure characteristics during hot deformation. Mater Res, 2000, 3(2):31
|
[11] |
Lopez N, Cid M, Puiggali M. Influence of σ-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corros Sci, 1999, 41(8):1615
|
[12] |
Ravindranath K, Malhotra S N. Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel. Corros, 1994, 50(4):318
|
[13] |
Du G W, Cai H Q, Cai J M, et al. Interstitial precipitation in a Fe25Cr5Al alloy. J Mater Sci Lett, 1996, 15(3):258
|
[15] |
Spear W S, Polonis D H. Interstitial precipitation in Fe-Cr-Al alloys. Metall Mater Trans A, 1994, 25(6):1135
|
[16] |
Li W, Lu S, Hu Q M, et al. The effect of Al on the 475℃ embrittlement of Fe-Cr alloys. Comput Mater Sci, 2013, 74:101
|
[17] |
Chandra D, Schwartz L H. M ssbauer effect study of the 475℃ decomposition of Fe-Cr. Metall Trans, 1971, 2(2):511
|
[18] |
Blackburn M J, Nutting J. Metallography of an iron-21% chromium alloy subjected to 475℃ embrittlement. J Iron Steel Inst, 1964, 202(7):610
|
[19] |
Grobner P J. The 885°F (475℃) embrittlement of ferritic stainless steels. Metall Trans, 1973, 4(1):251
|
[20] |
Sahu J K, Krupp U, Ghosh R N, et al. Effect of 475℃ embrittlement on the mechanical properties of duplex stainless steel. Mater Sci Eng A, 2009, 508(1-2):1
|
[22] |
Kobayashi S, Takasugi T. Mapping of 475℃ embrittlement in ferritic Fe-Cr-Al alloys. Scr Mater, 2010, 63(11):1104
|
[23] |
Kim Y J, Chumbley L S, Gleeson B. Determination of isothermal transformation diagrams for sigma-phase formation in cast duplex stainless steels CD3MN and CD3MWCuN. Metall Mater Trans A, 2004, 35(11):3377
|
[24] |
Ejenstam J, Thuvander M, Olsson P, et al. Microstructural stability of Fe-Cr-Al alloys at 450-550℃. J Nucl Mater, 2015, 457:291
|