<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

改進人工魚群算法及其在時滯系統辨識中的應用

曹法如 馮茂林

曹法如, 馮茂林. 改進人工魚群算法及其在時滯系統辨識中的應用[J]. 工程科學學報, 2017, 39(4): 619-625. doi: 10.13374/j.issn2095-9389.2017.04.018
引用本文: 曹法如, 馮茂林. 改進人工魚群算法及其在時滯系統辨識中的應用[J]. 工程科學學報, 2017, 39(4): 619-625. doi: 10.13374/j.issn2095-9389.2017.04.018
CAO Fa-ru, FENG Mao-lin. An improved artificial fish swarm algorithm and its application on system identification with a time-delay system[J]. Chinese Journal of Engineering, 2017, 39(4): 619-625. doi: 10.13374/j.issn2095-9389.2017.04.018
Citation: CAO Fa-ru, FENG Mao-lin. An improved artificial fish swarm algorithm and its application on system identification with a time-delay system[J]. Chinese Journal of Engineering, 2017, 39(4): 619-625. doi: 10.13374/j.issn2095-9389.2017.04.018

改進人工魚群算法及其在時滯系統辨識中的應用

doi: 10.13374/j.issn2095-9389.2017.04.018
基金項目: 

北京市科技計劃資助項目(Z121100003012016)

詳細信息
  • 中圖分類號: TP181

An improved artificial fish swarm algorithm and its application on system identification with a time-delay system

  • 摘要: 針對人工魚群算法(AFSA)存在收斂速度慢和尋優精度低等問題,本文提出了一種改進人工魚群算法(IAFSA).該算法中的人工魚能夠根據魚群當前狀態調整自身的視野和步長來平衡局部搜索和全局搜索.此外,算法中還加入了引導行為,即人工魚在覓食行為未發現更優的位置時,當前人工魚向最優人工魚移動一步.仿真結果表明,改進人工魚群算法在收斂速度、尋優精度和克服局部極值等方面有很大優勢.本文將改進魚群算法應用時滯系統的辨識中,辨識結果表明改進算法能獲取被控對象的精準數學模型,并具有較強的抗干擾能力.

     

  • [8] Luitel B, Venayagamoorthy G K. Particle swarm optimization with quantum infusion for system identification. Eng Appl Artif Intell, 2010, 23(5):635
    [10] Nelles O. Nonlinear System Identification:from Classical Approaches to Neural Networks and Fuzzy Models. Dordrecht:Springer Science&Business Media, 2013
    [13] Wang Q G, Zhang Y. Robust identification of continuous systems with dead-time from step responses. Automatica, 2001, 37(3):377
    [14] Liu T, Gao F R. A frequency domain step response identification method for continuous-time processes with time delay. J Process Control, 2010, 20(7):800
  • 加載中
計量
  • 文章訪問數:  688
  • HTML全文瀏覽量:  283
  • PDF下載量:  16
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-06-28

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164