[3] |
Sakai T, Sato Y, Oguma N. Characteristic S-N properties of highcarbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 2002, 25(8):765
|
[4] |
Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct, 2002, 25(8):735
|
[5] |
Shiozawa K, Lu L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 2001, 24(12):781
|
[6] |
Wang Q Y, Bathias C, Kawagoishi N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue, 2002, 24(12):1269
|
[7] |
Huang Z Y, Wagner D, Bathias C, et al. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Mater, 2010, 58(18):6046
|
[8] |
Chapetti M D, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels:Part Ⅱ. Estimation of fatigue limit for failure from internal inclusions. Mater Sci Eng A, 2003, 356(1):236
|
[9] |
Murakami Y, Miller K J. What is fatigue damage?a view point from the observation of low cycle fatigue process. Int J Fatigue, 2005, 27(8):991
|
[10] |
Sun C Q, Lei Z Q, Xie J J, et al. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fisheye mode failure. Int J Fatigue, 2013, 48:19
|
[11] |
Stanzl-Tschegg S, Sch nbauer B. Near-threshold fatigue crack propagation and internal cracks in steel. Procedia Eng, 2010, 2(1):1547
|
[12] |
Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A, 1982, 13(1):117
|
[13] |
Tanaka K, Akiniwa Y. Modelling of small fatigue crack growth interacting with grain boundary. Eng Fract Mech, 1986, 24(6):803
|
[14] |
Marines-Garcia I, Paris P C, Tada H, et al. Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal "fish-eye" failures for ferrite-perlitic low carbon steel SAE 8620. Mater Sci Eng A, 2007, 468-470:120
|
[15] |
Stepanskiy L G. Cumulative model of very high cycle fatigue. Fatigue Fract Eng Mater Struct, 2012, 35(6):513
|
[16] |
Cerullo M. Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng, 2014, 74:333
|
[17] |
Choi Y, Liu C R. Rolling contact fatigue life of finish hard machined surfaces:Part 1. Model development. Wear, 2006, 261:485
|
[18] |
Liu C R, Choi Y. Rolling contact fatigue life model incorporating residual stress scatter. Int J Mech Sci, 2008, 50(12):1572
|
[19] |
Chan K S. A microstructure-based fatigue-crack-initiation model. Metall Mater Trans A, 2003, 34(1):43
|
[20] |
Venkataraman G, Chung Y W, Nakasone Y, et al. Free-energy formulation of fatigue crack initiation along persistent slip bands:calculation of S-N curves and crack depths. Acta Metall Mater, 1990, 38(1):31
|
[21] |
Murakami Y, Aoki S. Stress Intensity Factors Handbook. Japan:Pergamon, 1987
|
[22] |
Paris P C, Tada H, Donald J K. Service load fatigue damage-a historical perspective. Int J Fatigue, 1999, 21(Suppl 1):S35
|