<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一個基于孔洞演化機制的韌性斷裂預測模型

穆磊 臧勇 Araujo Stemler Pedro Malaquias

穆磊, 臧勇, Araujo Stemler Pedro Malaquias. 一個基于孔洞演化機制的韌性斷裂預測模型[J]. 工程科學學報, 2017, 39(4): 557-566. doi: 10.13374/j.issn2095-9389.2017.04.011
引用本文: 穆磊, 臧勇, Araujo Stemler Pedro Malaquias. 一個基于孔洞演化機制的韌性斷裂預測模型[J]. 工程科學學報, 2017, 39(4): 557-566. doi: 10.13374/j.issn2095-9389.2017.04.011
MU Lei, ZANG Yong, Araujo Stemler Pedro Malaquias. A micromechanically motivated uncoupled model for ductile fracture prediction[J]. Chinese Journal of Engineering, 2017, 39(4): 557-566. doi: 10.13374/j.issn2095-9389.2017.04.011
Citation: MU Lei, ZANG Yong, Araujo Stemler Pedro Malaquias. A micromechanically motivated uncoupled model for ductile fracture prediction[J]. Chinese Journal of Engineering, 2017, 39(4): 557-566. doi: 10.13374/j.issn2095-9389.2017.04.011

一個基于孔洞演化機制的韌性斷裂預測模型

doi: 10.13374/j.issn2095-9389.2017.04.011
詳細信息
  • 中圖分類號: TG113.25

A micromechanically motivated uncoupled model for ductile fracture prediction

  • 摘要: 在韌性斷裂中微觀孔洞演化機制的基礎上,提出了一個基于孔洞演化機制的非耦合型韌性斷裂預測模型.模型充分考慮了兩種典型的孔洞演化機制:孔洞的長大機制和孔洞的拉長扭轉機制.該模型引入了三個具有不同物理意義的材料參數:材料對不同孔洞演化機制的敏感度、應力狀態敏感度系數和材料的損傷閾值,并使用等效塑性應變增量表征其對韌性損傷累積過程的驅動作用.為了使模型可以更好地反映三維應力狀態對材料韌性斷裂性能的影響,將該模型從主應力空間轉換到由應力三軸度、羅德參數和臨界斷裂應變構成的三維空間,得到了由模型確定的三維韌性斷裂曲面,并研究了相關參數對三維韌性斷裂曲面及平面應力二維韌性斷裂曲線的影響.利用5083-O鋁合金、TRIP690鋼和Docol 600DL雙相鋼三個典型的輕質高強板材的韌性斷裂數據驗證了該模型對不同材料和不同應力狀態的適用性和準確性.

     

  • [1] Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast, 2014, 54:56
    [2] Li Y N, Luo M, Gerlach J, et al. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol, 2010, 210(14):1858
    [4] Merklein M, Allwood J M, Behrens B A, et al. Bulk forming of sheet metal. CIRP Ann Manuf Technol, 2012, 61(2):725
    [5] McClintock F A, Kaplan S M, Berg C A. Ductile fracture by hole growth in shear bands. Int J Fract Mech, 1966, 2(4):614
    [6] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids, 1969, 17(3):201
    [7] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth:Part I. Yield criteria and flow rules for porous ductile media. J Eng Mater Technol, 1977, 99(1):2
    [8] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall, 1984, 32(1):157
    [9] Nahshon K, Hutchinson J W. Modification of the Gurson model for shear failure. Eur J Mech A Solids, 2008, 27(1):1
    [10] Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech, 2008, 75(11):3343
    [11] Li H, Fu M W, Lu J, et al. Ductile fracture:experiments and computations. Int J Plast, 2011, 27(2):147
    [12] Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics. Nucl Eng Des, 1984, 79(3):309
    [13] Lemaitre J. Local approach of fracture. Eng Fract Mech, 1986, 25(5):523
    [14] Cao T S, Gaillac A, Montmitonnet P, et al. Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical-experimental analysis of fracture experiments conducted on a zirconium alloy. Int J Solids Struct, 2013, 50(24):3984
    [15] Cao T S, Gachet J M, Montmitonnet P, et al. A lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Eng Fract Mech, 2014, 124-125:80
    [16] Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures. John Wiley&Sons, Inc, 1950
    [17] Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract, 2010, 161:1
    [18] Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct, 2012, 49(25):3605
    [19] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion:experiments and simulation. J Mater Process Technol, 2013, 213(8):1284
    [20] Algarni M, Bai Y L, Choi Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture. Eng Fract Mech, 2015, 147:140
    [21] Zhuang X C, Wang T T, Zhu X F, et al. Calibration and application of ductile fracture criterion under non-proportional loading condition. Eng Fract Mech, 2016, 165:39
    [22] Kiran R, Khandelwal K. A triaxiality and Lode parameter dependent ductile fracture criterion. Eng Fract Mech, 2014, 128:121
    [23] Tvergaard V. Behaviour of voids in a shear field. Int J Fract, 2009, 158(1):41
    [24] Barsoum I, Faleskog J. Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. Int J Solids Struct, 2011, 48(6):925
    [25] Brünig M, Gerke S, Hagenbrock V. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int J Plast, 2013, 50:49
    [26] Danas K, Castañeda P P. Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int J Solids Struct, 2012, 49(11):1325
    [27] Ghajar R, Mirone G, Keshavarz A. Ductile failure of X100 pipeline steel:experiments and fractography. Mater Des, 2013, 43:513
    [28] Qian L Y, Fang G, Zeng P, et al. Experimental and numerical investigations into the ductile fracture during the forming of flatrolled 5083-O aluminum alloy sheet. J Mater Process Technol, 2015, 220:264
    [29] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci, 2004, 46(1):81
    [30] Achouri M, Germain G, Santo P D, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des, 2013, 50:207
    [31] Lou Y S, Huh H. Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter. Acta Mech Solida Sin, 2013, 26(6):642
    [32] Samei J, Green D E, Cheng J, et al. Influence of strain path on nucleation and growth of voids in dual phase steel sheets. Mater Des, 2016, 92:1028
    [33] Gruben G, Morin D, Langseth M, et al. Strain localization and ductile fracture in advanced high-strength steel sheets. Eur J Mech A Solids, 2016, 61:315
  • 加載中
計量
  • 文章訪問數:  554
  • HTML全文瀏覽量:  170
  • PDF下載量:  19
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-12-25

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164