[1] |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des, 2014, 56:862
|
[2] |
Cui Z Y, Li X G, Xiao K, et al. Exfoliation corrosion behavior of 2Bo6 aluminum alloy in a tropical marine atmosphere. J Mater Eng Perform, 2015, 24(1):296
|
[3] |
De La Fuente D, Otero-Huerta E, Morcillo M. Studies of longterm weathering of aluminium in the atmosphere. Corros Sci, 2007, 49(7):3134
|
[4] |
Misak H E, Perel V Y, Sabelkin V, et al. Biaxial tension-tension fatigue crack growth behavior of 2024-T3 under ambient air and salt water environments. Eng Fract Mech, 2014, 118:83
|
[7] |
Tsai T C, Chuang T H. Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy. Metall Mater Trans A, 1996, 27(9):2617
|
[8] |
Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China. Corros Sci, 2012, 59:63
|
[11] |
Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China. Corros Sci, 2011, 53(8):2527
|
[12] |
Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theor Appl Fract Mech, 2005, 43(1):121
|
[13] |
Lacroix L, Blanc C, Pebere N, et al. Simulating the galvanic coupling between S-Al2 CuMg phase particles and the matrix of 2024 aerospace aluminum alloy. Corros Sci, 2012, 64:213
|
[14] |
Burns J T, Larsen J M, Gangloff R P. Driving forces for localized corrosion-to-fatigue crack transition in Al-Zn-Mg-Cu. Fatigue Fract Eng Mater Struct, 2011, 34(10):745
|
[15] |
Sheng H, Dong C F, Xiao K, et al. Anodic dissolution of a crack tip at AA2024-T351 in 3.5 wt% NaCl solution. Int J Miner Metall Mater, 2012, 19(10):939
|
[16] |
Pidaparti R M, Patel R R. Correlation between corrosion pits and stresses in Al alloys. Mater Lett, 2008, 62(30):4497
|