<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

X70管線鋼及焊縫在模擬煤制氣含氫環境下的氫脆敏感性

關鴻鵬 林振嫻 李瑜仙 劉青 邢云穎 王晶 王修云

關鴻鵬, 林振嫻, 李瑜仙, 劉青, 邢云穎, 王晶, 王修云. X70管線鋼及焊縫在模擬煤制氣含氫環境下的氫脆敏感性[J]. 工程科學學報, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
引用本文: 關鴻鵬, 林振嫻, 李瑜仙, 劉青, 邢云穎, 王晶, 王修云. X70管線鋼及焊縫在模擬煤制氣含氫環境下的氫脆敏感性[J]. 工程科學學報, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
Citation: GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008

X70管線鋼及焊縫在模擬煤制氣含氫環境下的氫脆敏感性

doi: 10.13374/j.issn2095-9389.2017.04.008
詳細信息
  • 中圖分類號: TG172.3;TE832

Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment

  • 摘要: 通過氫滲透測試、氫擴散模擬以及氫含量測試技術研究X70鋼在模擬4 MPa總壓,0.2 MPa氫氣分壓煤制氣環境下的充氫過程,并通過沖擊韌性測試、裂紋擴展測試以及缺口拉伸和慢應變速率拉伸測試方法,從不同角度分析X70鋼母材和焊縫組織在模擬煤制氣含氫環境下的力學性能.結果表明,在總壓4 MPa,0.2 MPa含氫煤制氣環境中,X70鋼表面存在吸附氫原子并能擴散進入X70鋼內部,達到穩態后內部的可擴散氫質量分數為1.9×10-7;與空氣中的原始性能比較,X70鋼焊縫和母材的沖擊性能、缺口拉伸和慢應變速率拉伸強度、塑性以及材料的損傷容限均未發生下降;在實驗煤制氣環境中,X70鋼具有較低的氫脆風險.

     

  • [3] Marchi C S, Somerday B P, Nibur K A, et al. Fracture and fatigue of commercial grade API pipeline steels in gaseous hydrogen//Proceedings of the ASME 2010 Pressure Vessels&Piping Division/K-PVP Conference. Bellevue, 2010:18
    [4] Cialone H J, Holbrook J H. Sensitivity of steels to degradation in gaseous hydrogen//Hydrogen Embrittlement:Prevention and Control. Los Angeles, 1988
    [5] Briottet L, Batisse R, Dinechin G D, et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int J Hydrogen Energy, 2012, 37(11):9423
    [6] Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros Sci, 2012, 59:1
    [7] Briottet L, Moro I, Lemoine P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. Int J Hydrogen Energy, 2012, 37(22):17616
    [8] Amend W E, Quickel G T, Bruce W A, et al. Hydrogen assisted cracking failures of girth welds in oil and pipelines//Proceedings of the 20129th International Pipeline Conference. Calgary, 2012:24
    [12] Smialowski M. Hydrogen in Steel:Effect of Hydrogen on Iron and Steel during Production, Fabrication, and Use. New York:Pergamon Press, 1962
    [13] Somerday B P, Nibur K A, San Marchi C. Measurements of fatigue crack growth rates for steels in hydrogen containment components//Proceeding of the 3rd International Conference on Hydrogen Safety. Ajaccio, 2009
    [14] Tison P. Influence of the Hydrogen Behavior on Materials[Dissertation]. France:Pierre and Marie Curie University,1983(Tison P. Influence de L'hydrogène sur le Comportement des Matériaux[Dissertation]. France:Université Pierre et Marie Curie, 1983)
    [15] Chêne J, Brass A M. Hydrogen Transport by mobile dislocations in nickel base superalloy single crystals. Scripta Mater, 1999, 40(5):537
    [16] Moro I, Briottet L, Lemoine P, et al. Damage under high-pressure hydrogen environment of a high strength pipeline steel X80//Proceeding of the 2008 International Hydrogen Conference. Jackson Lake, 2008
    [17] Lynch S P. Progress towards understanding mechanisms of hydrogen embrittlement and stress corrosion cracking//Corrosion 2007. Nashville, 2007
    [18] Ren X C, Chu W Y, Su Y J, et al. Effects of atomic hydrogen and flaking on mechanical properties of wheel steel. Metall Mater Trans A, 2007, 38(5):1004
    [19] Yamasaki S, Takahashi T. Delayed fracture mechanism in high strength steels by acoustic emission source wave analysis. Tetsuto-Hagane, 1997, 83(7):460
    [20] Takagi S, Inoue T, Hara T, et al. Parameters for the evaluation of hydrogen embrittlement of high strength steel. Tetsu-toHagane, 2000, 86(10):689
  • 加載中
計量
  • 文章訪問數:  927
  • HTML全文瀏覽量:  307
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-07-22

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164