<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于逐層演化的群體智能算法優化

張水平 王碧 陳陽

張水平, 王碧, 陳陽. 基于逐層演化的群體智能算法優化[J]. 工程科學學報, 2017, 39(3): 462-473. doi: 10.13374/j.issn2095-9389.2017.03.020
引用本文: 張水平, 王碧, 陳陽. 基于逐層演化的群體智能算法優化[J]. 工程科學學報, 2017, 39(3): 462-473. doi: 10.13374/j.issn2095-9389.2017.03.020
ZHANG Shui-ping, WANG Bi, CHEN Yang. Optimization for swarm intelligence based on layer-by-layer evolution[J]. Chinese Journal of Engineering, 2017, 39(3): 462-473. doi: 10.13374/j.issn2095-9389.2017.03.020
Citation: ZHANG Shui-ping, WANG Bi, CHEN Yang. Optimization for swarm intelligence based on layer-by-layer evolution[J]. Chinese Journal of Engineering, 2017, 39(3): 462-473. doi: 10.13374/j.issn2095-9389.2017.03.020

基于逐層演化的群體智能算法優化

doi: 10.13374/j.issn2095-9389.2017.03.020
詳細信息
  • 中圖分類號: TP301.6

Optimization for swarm intelligence based on layer-by-layer evolution

  • 摘要: 為能徹底解決群體智能算法早熟問題的同時保持原算法主體不變且可與現有優化理論協同優化,在前期仿真實驗和理論證明的基礎上,提出了一種逐層演化的改進策略.利用在原算法中構建基于搜索空間壓縮理論的自適應系統,通過逐層的壓縮、選擇、再初始化的操作,以包括壓縮后搜索空間在內的社會信息作為遺傳知識,指導尋優過程,從而實現最終解精度的提升、避免早熟問題的出現.對基準函數進行仿真實驗可以看出該策略在提升算法精度,增強后期個體活性方面具有良好的表現.

     

  • [1] Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233):aaa2491-1
    [2] Eiben A E, Smith J. From evolutionary computation to the evolution of things. Nature, 2015, 521(7553):476
    [4] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization//Proceedings of the 2000 Congress on Evolutionary Computation. IEEE. La Jolla, 2000:84
    [5] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput, 2002, 6(1):58
    [6] Shi Y, Eberhart R. A modified particle swarm optimizer//The 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE. Anchorage, 1998:69
    [7] Nickabadi A, Ebadzadeh M M, Safabakhsh R. A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput, 2011, 11(4):3658
    [8] Zhan Z H, Zhang J, Li Y, et al. Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput, 2011, 15(6):832
    [9] Xu G. An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput, 2013, 219(9):4560
    [10] De Oca M A M, Stützle T, Van Den Enden K, et al. Incremental social learning in particle swarms. IEEE Trans Syst Man Cybern B, 2011, 41(2):368
    [11] Xin B, Chen J, Zhang J, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers:a review and taxonomy. IEEE Trans Syst Man Cybern C, 2012, 42(5):744
    [13] Mendes R, Kennedy J, Neves J. The fully informed particle swarm:simpler, maybe better. IEEE Trans Evol Comput, 2004, 8(3):204
    [14] Zhang W J, Xie X F, Bi D C. Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space//CEC2004. Congress on Evolutionary Computation. IEEE. Portland, 2004:2307
    [15] Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput, 2013, 17(2):259
    [16] Zhan Z H, Zhang J, Li Y,et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B, 2009, 39(6):1362
    [17] Riget J, Vesterstrøm J S. A Diversity-guided Particle Swarm Optimizer:the ARPSO. Aarhus:Aarhus University, 2002
    [19] Eberhart R C, Shi Y H. Tracking and optimizing dynamic systems with particle swarms//Proceedings of the 2001 Congress on Evolutionary Computation. IEEE. Seoul, 2001:94
    [20] Shi Y, Eberhart R C. Empirical study of particle swarm optimization//CEC 99. Proceedings of the 1999 Congress on Evolutionary Computation. IEEE. Washington D. C., 1999
    [21] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res, 2006, 33(3):859
    [22] Li X D, Tang K, Omidvar M N, et al. Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene, 2013, 7(33):8
  • 加載中
計量
  • 文章訪問數:  876
  • HTML全文瀏覽量:  289
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-05-09

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164