[1] |
Staley J T, Liu J, Hunt W H Jr, et al. Aluminum alloys for aerostructures. Adv Mater Processes, 1997, 152(4):17
|
[2] |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1):102
|
[3] |
Williams J C, Jr Starke E A. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51(19):5775
|
[5] |
Spiedel M O. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6:631
|
[6] |
Osaki S, Itoh D, Nakai M. SCC properties of 7050 series aluminum alloys in T6 and RRA tempers. Jpn Inst Light Met, 2001, 51(4):222
|
[7] |
Ramgopal T, Gouma P I, Frankel G S. Role of grain-boundary precipitates and solute depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion, 2002, 58(8):687
|
[8] |
Puiggali M, Zienlinski A, Olive J M, et al. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy. Corros Sci, 1998, 40(4):805
|
[9] |
Cina B M. Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys, to Stress Corrosion Cracking:US Patent, 3856584. 1974-12-24
|
[10] |
Kanno M, Araki I, Cui Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment. Mater Sci Technol, 1994, 10:599
|
[11] |
Park J K. Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6. Mater Sci Eng A, 1988, 103(2):223
|
[12] |
Robinson J S, Tanner D A, Whelan S D. Retrogression, reaging and residual stresses in 7010 forgings. Fatigue Fract Eng Mater Struct, 1999, 22(1) 51
|
[13] |
Viana F, Pinto A M P, Santos H M C, et al. Retrogression and re-ageing of 7075 aluminium alloy:microstructural characterization. J Mater Process Technol, 1999, 92-93:54
|
[14] |
Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy. Acta Mater, 2010, 58(14):4814
|
[15] |
Li G F, Zhang X M, Li P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050. Trans Nonferrous Met Soc China, 2010, 20(6):935
|
[17] |
Ma C Q, Hou L G, Zhang J S, et al. Experimental and numerical investigations of the plastic deformation during multi-pass asymmetric and symmetric rolling of high-strength aluminum alloys. Mater Sci Forum, 2014, 794-796:1157
|
[18] |
Tsai T C, Chuang T H. Relationship between electrical conductivity and stress corrosion cracking susceptibility of Al 7075 and Al 7475 alloys. Corrosion, 1996, 52(6):414
|
[19] |
Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater Sci Eng A, 2003, 356(1):326
|
[20] |
Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater, 2004, 52(15):4503
|
[22] |
Song R. G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu Alloy. Acta Mater, 2004, 52(16):4727
|
[23] |
Meng Q C, Fan X G, Ren S Y, et al. Comparison of microstructure and corrosion properties of Al-Zn-Mg-Cu alloys 7150 and 7010. Trans Nonferrous Met Soc China, 2006, 16(A3):s1356
|
[25] |
Huo W T, Hou L G, Lang Y J, et al. Improved thermo-mechanical processing for effective grain refinement of high-strength AA 7050 Al alloy. Mater Sci Eng A, 2015, 626:86
|
[26] |
El-Baradie Z M, El-Sayed M. Effect of double thermomechanical treatments on the properties of 7075 Al alloy. J Mater Process Technol, 1996, 62(1):76
|
[27] |
Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater, 2001, 49(17):3443
|
[28] |
Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050. Mater Sci Eng A, 2008, 492(1):1
|
[29] |
Kumar M, Poletti C, Degischer H P. Precipitation kinetics in warm forming of AW-7020 alloy. Mater Sci Eng A, 2013, 561:362
|