<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高性能鋰離子電池負極材料一氧化錳/石墨烯復合材料的合成

苗小飛 劉永川 張祥昕 陳素晶 陳遠強 張易寧

苗小飛, 劉永川, 張祥昕, 陳素晶, 陳遠強, 張易寧. 高性能鋰離子電池負極材料一氧化錳/石墨烯復合材料的合成[J]. 工程科學學報, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013
引用本文: 苗小飛, 劉永川, 張祥昕, 陳素晶, 陳遠強, 張易寧. 高性能鋰離子電池負極材料一氧化錳/石墨烯復合材料的合成[J]. 工程科學學報, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013
MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013
Citation: MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013

高性能鋰離子電池負極材料一氧化錳/石墨烯復合材料的合成

doi: 10.13374/j.issn2095-9389.2017.03.013
基金項目: 

國家自然科學基金青年基金項目(51602310);福建省科學技術資助項目(2014H2008);福建省重點引導性資助項目(2015H0052,2016H0047)

詳細信息
  • 中圖分類號: TM912.9

Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries

  • 摘要: 通過凍干-煅燒合成了一氧化錳/石墨烯(MnO/rGO)復合材料,并將其用作鋰離子電池負極材料.在500 mA·g-1的電流密度下,MnO/rGO復合材料表現出高達830 mAh·g-1的可逆容量,且在充放電循環160圈后,其可逆容量依然高達805 mAh·g-1.倍率測試結果顯示,循環225圈后,在2.0 A·g-1的電流密度下,其可逆容量高達412 mAh·g-1.復合材料中的石墨烯在提高材料導電性的同時有效地緩解了一氧化錳充放電過程中的體積膨脹.通過對比容量-電壓的微分分析,發現復合材料超出一氧化錳理論容量的部分是由形成了更高價態的錳引起的.MnO/rGO復合材料比純一氧化錳(p-MnO)更容易出現高價態的錳,可能是因為rGO上殘留的氧為電極反應提供了額外所需的氧源.該一氧化錳/石墨烯復合材料因其簡單綠色的合成過程及優異的電化學性質,有望在未來的鋰電負極中得到廣泛的實際應用.

     

  • [1] Evarts E C. Lithium batteries:To the limits of lithium. Nature, 2015, 526(7575):S93
    [2] Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113(7):5364
    [3] Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc, 2004, 151(11):A1878
    [4] Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun, 2009, 11(4):791
    [5] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the lowpotential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc, 2002, 149(9):A1212
    [6] Zhong K F, Xia X, Zhang B, et al. MnO powder as anode active materials for lithium ion batteries. J Power Sources, 2010, 195(10):3300
    [7] Fang X P, Lu X, Guo X W, et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun, 2010, 12(11):1520
    [8] Zang J, Qian H, Wei Z K, et al. Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochim Acta, 2014, 118:112
    [9] Wang T Y, Peng Z, Wang Y H, et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci Rep, 2013, 3:2693
    [10] Sun X F, Xu Y L, Ding P, et al. The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. J Power Sources, 2013, 244:690
    [11] Qiu D F, Ma L Y, Zheng M B, et al. MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Mater Lett, 2012, 84:9
    [12] Mai Y J, Zhang D, Qiao Y Q, et al. MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources, 2012, 216:201
    [13] Zhang K J, Han P X, Gu L, et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(2):658
    [14] Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1(1):107
    [15] Srivastava M, Singh J, Kuila T, et al. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale, 2015, 7:4820
    [16] Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183
    [17] Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene. Chem Rev, 2009, 110(1):132
    [18] Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials:A review. J Power Sources, 2013, 240:66
    [19] Yang M, Zhong Y R, Zhou X L, et al. Ultrasmall MnO@Nrich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A, 2014, 2:12519
    [20] Xu G B, Jiang F, Ren Z A, et al. Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceram Int, 2015, 41(9):10680
    [21] Zou B K, Zhang Y Y, Wang J Y, et al. Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochim Acta, 2015, 167:25
    [22] Sun Y M, Hu X L, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23(19):2436
    [23] Zhao G X, Huang X B, Wang X K, et al. Synthesis and lithiumstorage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(vi) to Mn(ii) by the reducing power of graphene oxide. J Mater Chem A, 2015, 3(1):297
    [24] Petnikota S, Srikanth V V S S, Nithyadharseni P, et al. Sustainablegraphenothermal reduction chemistry to obtain MnO nanonetwork supported exfoliated graphene oxide composite and its electrochemical characteristics. ACS Sustainable Chem Eng, 2015, 3(12):3205
    [25] Zhang S, Zhu L X, Song H H, et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy, 2014, 10:172
    [26] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8):4806
    [27] Campos-Delgado J, Romo-Herrera J M, Jia X T, et al. Bulk production of a new form of sp2 carbon:crystalline graphene nanoribbons. Nano Lett, 2008, 8(9):2773
    [28] Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphite oxide. Nat Chem, 2009, 1:403
    [29] Moulder J F. Handbook of X-Ray Photoelectron Spectroscopy:A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Eden Prairie:Physical Electronics, 1995
    [30] Hsieh C T, Lin C Y, Lin J Y. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Liion batteries. Electrochim Acta, 2011, 56(24):8861
    [31] Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem, 2006, 16:155
    [32] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 2006, 110(17):8535
    [33] Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials:Case study of RuO2. Adv Mater, 2008, 20(3):501
    [34] Xia Y, Xiao Z, Dou X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithiumion batteries. ACS Nano, 2013, 7(8):7083
    [35] Zhong K F, Zhang B, Luo S H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources, 2011, 196(16):6802
    [36] Luo W, Hu X L, Sun Y M, et al. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl Mater Interfaces, 2013, 5(6):1997
    [37] Cao K Z, Jiao L F, Xu H, et al. Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv Sci, 2016, 3:1500185
  • 加載中
計量
  • 文章訪問數:  903
  • HTML全文瀏覽量:  298
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-05-17

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164