<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高爐休風時供氧管網壓力對氧氣調度的影響

張培昆 王立

張培昆, 王立. 高爐休風時供氧管網壓力對氧氣調度的影響[J]. 工程科學學報, 2017, 39(2): 283-293. doi: 10.13374/j.issn2095-9389.2017.02.017
引用本文: 張培昆, 王立. 高爐休風時供氧管網壓力對氧氣調度的影響[J]. 工程科學學報, 2017, 39(2): 283-293. doi: 10.13374/j.issn2095-9389.2017.02.017
ZHANG Pei-kun, WANG Li. Effects of oxygen pipe-network pressure on the oxygen scheduling during blast furnace blow-down[J]. Chinese Journal of Engineering, 2017, 39(2): 283-293. doi: 10.13374/j.issn2095-9389.2017.02.017
Citation: ZHANG Pei-kun, WANG Li. Effects of oxygen pipe-network pressure on the oxygen scheduling during blast furnace blow-down[J]. Chinese Journal of Engineering, 2017, 39(2): 283-293. doi: 10.13374/j.issn2095-9389.2017.02.017

高爐休風時供氧管網壓力對氧氣調度的影響

doi: 10.13374/j.issn2095-9389.2017.02.017
基金項目: 

國家自然科學基金資助項目(51306015);高等學校博士學科點專項科研基金資助項目(20130006120015)

詳細信息
  • 中圖分類號: TF724.4

Effects of oxygen pipe-network pressure on the oxygen scheduling during blast furnace blow-down

  • 摘要: 以國內某大型鋼鐵企業空分廠為研究對象,基于混合整數線性規劃方法建立以氧氣放散量最小為目標的生產調度模型,并在此基礎上以高爐休風期間的氧氣生產調度為案例,分析了高爐開始休風期間管網初始壓力對氧氣放散率的影響.高壓管網初始壓力大于臨界值時,系統出現氧氣放散,放散率隨初始壓力上升呈近線性增大關系,高壓管網緩沖容量越大,該線性關系斜率越大.有氧氣放散的情況下,對于同一高壓管網初始壓力,高壓管網緩沖容量越大,系統放散率越小.該趨勢隨著高壓管網初始壓力增大變得越來越不明顯,當初始壓力等于最高壓力時,高壓管網緩沖容量的大小對放散率沒有影響.

     

  • [2] Fu Q, Kansha Y, Song C F, et al. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants. Appl Energy, 2016, 162:1114
    [3] Xu Z H, Zhao J, Chen X, et al. Automatic load change system of cryogenic air separation process. Sep Purif Technol, 2011, 81(3):451
    [4] Manenti F, Manca D. Transients modelling for enterprise-wide optimization:Generalized framework and industrial case study. Chem Eng Res Des, 2009, 87(8):1028
    [5] Manenti F, Rovaglio M. Operational planning in the management of programmed maintenances-a MILP approach//Proceedings of the 8th IFAC Symposium on Dynamics and Control of Process Systems. Cancún, 2007:279
    [6] Glankwamdee W, Linderoth J, Shen J R, et al. Combining optimization and simulation for strategic and operational industrial gas production and distribution. Comput Chem Eng, 2008, 32(11):2536
    [7] Mitra S, Grossmann I E, Pinto J M, et al. Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes. Comput Chem Eng, 2012, 38:171
    [8] Manenti F, Bozzano G, D'Isanto M, et al. Raising the decision-making level to improve the enterprise-wide production flexibility. AIChE J, 2013, 59(5):1588
    [9] Manenti F, Rovaglio M. Market-driven operational optimization of industrial gas supply chains. Comput Chem Eng, 2013, 56:128
    [10] Mitra S, Pinto J M, Grossmann I E. Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty:Part I. Modelling. Comput Chem Eng, 2014, 65:89
    [11] Mitra S, Pinto J M, Grossmann I E. Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty:Part Ⅱ. Enhanced hybrid bi-level decomposition. Comput Chem Eng, 2014, 65:102
    [12] Marchetti P A, Gupta V, Grossmann I E, et al. Simultaneous production and distribution of industrial gas supply-chains. Comput Chem Eng, 2014, 69:39
    [13] Rossi F, Manenti F, Reklaitis G. A general modular framework for the integrated optimal management of an industrial gases supply-chain and its production systems. Comput Chem Eng, 2015, 82:84
    [14] Zhang Q, Sundaramoorthy A, Grossmann I E, et al. A discrete-time scheduling model for continuous power-intensive process networks with various power contracts. Comput Chem Eng, 2016, 84:382
    [22] Zhu Y, Legg S, Laird C D. A multiperiod nonlinear programming approach for operation of air separation plants with variable power pricing. AIChE J, 2011, 57(9):2421
    [23] Li Y L, Wang X, Ding Y L. A cryogen-based peak-shaving technology:systematic approach and techno-economic analysis. Int J Energy Res, 2013, 37(6):547
  • 加載中
計量
  • 文章訪問數:  646
  • HTML全文瀏覽量:  273
  • PDF下載量:  9
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-05-29

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164