<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于全局優化支持向量機的多類別高爐故障診斷

張海剛 張森 尹怡欣

張海剛, 張森, 尹怡欣. 基于全局優化支持向量機的多類別高爐故障診斷[J]. 工程科學學報, 2017, 39(1): 39-47. doi: 10.13374/j.issn2095-9389.2017.01.005
引用本文: 張海剛, 張森, 尹怡欣. 基于全局優化支持向量機的多類別高爐故障診斷[J]. 工程科學學報, 2017, 39(1): 39-47. doi: 10.13374/j.issn2095-9389.2017.01.005
ZHANG Hai-gang, ZHANG Sen, YIN Yi-xin. Multi-class fault diagnosis of BF based on global optimization LS-SVM[J]. Chinese Journal of Engineering, 2017, 39(1): 39-47. doi: 10.13374/j.issn2095-9389.2017.01.005
Citation: ZHANG Hai-gang, ZHANG Sen, YIN Yi-xin. Multi-class fault diagnosis of BF based on global optimization LS-SVM[J]. Chinese Journal of Engineering, 2017, 39(1): 39-47. doi: 10.13374/j.issn2095-9389.2017.01.005

基于全局優化支持向量機的多類別高爐故障診斷

doi: 10.13374/j.issn2095-9389.2017.01.005
基金項目: 

國家自然科學基金資助項目(61333002,61673056)

詳細信息
  • 中圖分類號: TF549

Multi-class fault diagnosis of BF based on global optimization LS-SVM

  • 摘要: 針對高爐故障診斷系統快速性和準確性的要求,提出基于全局優化最小二乘支持向量機的策略.首先,采用變尺度離散粒子群對最小二乘支持向量機的參數和故障特征的選取進行優化;然后,利用核主元分析法對選取的特征向量進行壓縮整理;最后,構造了以Fisher線性判別率為標準的啟發式糾錯輸出編碼.仿真結果表明,通過對故障訓練樣本有意義地分割重組,用較少的最小二乘支持向量機分類器,得到較高的故障判斷準確率且增強了整個系統的實時性.

     

  • [4] Liu L M, Wang A N, Sha M, et al. Fault diagnostics of blast furnace based on CLS-SVM//2010 Chinese Conference on Pattern Recognition. IEEE, 2010
    [7] Pujol O, Radeva P, Vitria J. Discriminant ECOC:a heuristic method for application dependent design of error correcting output codes. IEEE Trans Pattern Anal Mach Intell, 2006, 28(6):1007
    [8] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3):293
    [10] Gestel T V, Suykens J A K, Lanckriet G, et al. Multiclass LS-SVMs:moderated outputs and coding-decoding schemes. Neural Process Lett, 2002, 15(1):45
    [11] Liu L M, Wang A N, Sha M, et. al. Multi-class classification methods of cost-conscious LS-SVM for fault diagnosis of blast furnace. J Iron Steel Res Int, 2011, 18(10):17
    [13] Allwein E, Schapire R, Singer Y. Reducing multiclass to binary:a unifying approach for margin classifiers. Mach Learn Res, 2002, 12(1):113
    [17] Cao L J, Chua K S, Chong W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2):321
  • 加載中
計量
  • 文章訪問數:  679
  • HTML全文瀏覽量:  279
  • PDF下載量:  11
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-03-16

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164