<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

汞污染土壤修復技術的研究進展

盧光華 岳昌盛 彭犇 邱桂博 郭敏 張梅

盧光華, 岳昌盛, 彭犇, 邱桂博, 郭敏, 張梅. 汞污染土壤修復技術的研究進展[J]. 工程科學學報, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001
引用本文: 盧光華, 岳昌盛, 彭犇, 邱桂博, 郭敏, 張梅. 汞污染土壤修復技術的研究進展[J]. 工程科學學報, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001
LU Guang-hua, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001
Citation: LU Guang-hua, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001

汞污染土壤修復技術的研究進展

doi: 10.13374/j.issn2095-9389.2017.01.001
基金項目: 

國家科技支撐計劃資助項目(2013BAC14B07);國家高技術研究發展計劃資助項目(2013AA032003);國家自然科學基金資助項目(51372019,51572020)

詳細信息
  • 中圖分類號: X-1;X53

Review of research progress on the remediation technology of mercury contaminated soil

  • 摘要: 在造成土壤污染的重金屬中,汞以其來源多、傳播廣、毒性大等特點,已經引起世界各國環境工作者的高度重視.隨著近代工業的發展,土壤系統中汞的排放量增長顯著,對土壤環境安全造成較大的威脅,也對土壤修復工作提出迫切的要求.結合土壤修復技術研究現狀,本文分別對汞的來源、土壤中汞的主要賦存狀態及修復方法進行綜述,重點介紹不同汞污染土壤的修復方法,如淋洗法、穩定化/固化法、熱處理法、電動修復法、納米技術法、生物修復法等國內外最新研究進展,并對今后汞污染土壤的修復技術提出展望,為從事土壤修復、環境保護與治理的科研工作者提供有效參考.

     

  • [1] Yin R S, Feng X B, Shi W F. Application of the stable-isotope system to the study of sources and fate of Hg in the environment:a review. Appl Geochem, 2010, 25(10):1467
    [2] Xu J Y, Bravo A G, Lagerkvist A, et al. Sources and remediation techniques for mercury contaminated soil. Environ Int, 2015, 74:42
    [3] Santos-Francés F, García-Sánchez A, Alonso-Rojo P, et al. Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. J Environ Manage, 2011, 92(4):1268
    [4] Cheng J P, Yuan T, Wang W H, et al. Mercury pollution in two typical areas in Guizhou Province, China and its neurotoxic effects in the brains of rats fed with local polluted rice. Environ Geochem Health, 2006, 28(6):499
    [5] Wang J X, Feng X B, Anderson C W N, et al. Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil:results from a greenhouse study. J Hazard Mater, 2011, 186(1):119
    [6] Arctic Monitoring and Assessment Programme (AMAP)/United Nations Environment Programme (UNEP). Technical Background Report for the Global Mercury Assessment. Geneva, 2013:5
    [11] Kabata-Pendias A. Trace Elements in Soils and Plants. 4th Ed. London:CRC Press, 2010
    [12] Issaro N, Abi-Ghanem C, Bermond A. Fractionation studies of mercury in soils and sediments:a review of the chemical reagents used for mercury extraction. Anal Chim Acta, 2009, 631(1):1
    [13] Evanko C R, Dzombak D A. Remediation of Metals-contaminated Soils and Groundwater. Ground-water Remediation Technologies Analysis Center, 1997
    [14] Mercier G, Duchesne J, Blackburn D. Prediction of metal removal efficiency from contaminated soils by physical methods. J Environ Eng, 2001, 127(4):348
    [15] Sierra C, Menéndez-Aguado J M, Afif E, et al. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J Hazard Mater, 2011, 196:93
    [16] Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal:a review of physical/chemical technologies and field applications. J Hazard Mater, 2008, 152(1):1
    [17] Dermont G, Bergeron M, Mercier G, et al. Metal-contaminated soils:remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage, 2008, 12(3):188
    [18] Bernaus A, Gaona X, Ree D V, et al. Determination of mercury in polluted soils surrounding a chlor-alkali plant:direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta, 2006, 565(1):73
    [19] Fernández-Martínez R, Rucandio M I. Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem, 2005, 381(8):1499
    [20] Smolińska B, Król K. Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. J Chem Technol Biotechnol, 2012, 87(9):1360
    [21] Wasay S A, Arnfalk P, Tokunaga S. Remediation of a soil polluted by mercury with acidic potassium iodide. J Hazard Mater, 1995, 44(1):93
    [22] Subirés-Muñoz J D, García-Rubio A, Vereda-Alonso C, et al. Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol, 2011, 79(2):151
    [23] Klasson K T, Koran L J, Gates D D, et al. Removal of mercury from solids using the potassium iodide/iodine leaching process//Office of Scientific & Technical Information Technical Reports. Oak Ridge, 1997:9
    [25] Ray A B, Selvakumar A. Laboratory studies on the remediation of mercury contaminated soils. Rem J, 2000, 10(4):49
    [26] Nascimento C W A D, Amarasiriwardena D, Xing B S. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut, 2006, 140(1):114
    [27] Paria S, Yuet P K. Solidification-stabilization of organic and inorganic contaminants using portland cement:a literature review. Environ Rev, 2006, 14(4):217
    [29] Zhang X Y, Wang Q C, Zhang S Q, et al. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement. J Hazard Mater, 2009, 168(2):1575
    [30] Zhang J, Bishop P L. Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J Hazard Mater, 2002, 92(2):199
    [31] Chattopadhyay S. Evaluation of Chemically Bonded Phosphate Ceramics for Mercury Stabilization of a Mixed Synthetic Waste. Ohio:US Environmental Proectection agency, Office of Research and Development, National Risk Management Research Laboratory, 2003:4
    [32] Wagh A S, Singh D, Jeong S Y. Mercury stabilization in chemically bonded phosphate ceramics//Invited paper for Environmental Protection Agency's Workshop on Mercury Products, Processes, Waste, and the Environment:Eliminating, Reducing and Managing Risks. Baltimore, 2000:5
    [33] López-Delgado A, López F A, Alguacil F J, et al. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I:characterization of materials. Rev Metal, 2012, 48(1):45
    [34] Piao H S, Bishop P L. Stabilization of mercury-containing wastes using sulfide. Environ Pollut, 2006, 139(3):498
    [35] Randall P, Chattopadhyay S. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. J Hazard Mater, 2004, 114(1):211
    [36] Chang T C, Yen J H. On-site mercury-contaminated soils remediation by using thermal desorption technology. J Hazard Mater, 2006, 128(2):208
    [37] Sierra M J, Millán R, López F A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption. Environ Sci Pollut Res, 2016, 23(5):4898
    [38] Huang Y T, Hseu Z Y, Hsi H C. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, 2011, 84(9):1244
    [39] Comuzzi C, Lesa B, Aneggi E, et al. Salt-assisted thermal desorption of mercury from contaminated dredging sludge. J Hazard Mater, 2011, 193:177
    [40] Ma F J, Zang Q, Xu D P, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3, at reduced temperature. Chemosphere, 2014, 117:388
    [41] Richter R B, Flachberger H. Soil washing and thermal desorption:reliable techniques for remediating materials contaminated with mercury. Berg Hüttenmänn Monatsh, 2010, 155(12):571
    [42] Virkutyt J, SillanpääM, Latostenmaa P. Electrokinetic soil remediation-critical overview. Sci Total Environ, 2002, 289(1):97
    [43] Reddy K R, Chaparro C. Electrokinetic remediation of mercurycontaminated soils. J Environ Eng, 2003, 129(12):1137
    [44] Negrete J L M, Barboza E L. Electrokinetic remediation of mercury-contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba-Colombia. Revista Facultad de Ingenieria Universidad de Antioquia, 2013, 68:136
    [45] Darban A K, Ayati B, Yong R N, et al. Enhanced electrokinetic remediation of mercury-contaminated tailing dam sediments. J ASTM Int, 2009, 6(5):1
    [46] Herrada R A, Pérez-Corona M, Shrestha R A, et al. Electrokinetic remediation of polluted soil using nano-materials:nano-iron case//Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, 2014:41
    [47] Shen Z M, Zhang J D, Qu L Y, et al. A modified EK method with an I-/I 2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils. Environ Geol, 2009, 57(6):1399
    [50] Wang X H, Yang L, Zhang J P, et al. Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(Ⅱ) ions. Chem Eng J, 2014, 251:404
    [51] Gong Y Y, Liu Y Y, Xiong Z, et al. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology, 2012, 23(29):294007
    [52] Zhang J Y, Li C X, Wang D Y, et al. The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. J Soils Sediments, 2017,17(2):536
    [54] Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals. Curr Opin Biotechnol, 1997, 8(3):279
    [56] Pérez-Sanz A, Millán R, Sierra M J, et al. Mercury uptake by Silene vulgaris, grown on contaminated spiked soils. J Environ Manage, 2012, 95(Supp l):S233
    [57] Smolińska B, Cedzyńska K. EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere, 2007, 69(9):1388
    [58] Rugh C L, Senecoff J F, Meagher R B, et al. Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol, 1998, 16(10):925
    [59] Padmavathiamma P K, Li L Y. Phytoremediation technology:hyper-accumulation metals in plants. Water Air Soil Pollut, 2007, 184(1):105
    [60] Sinha A, Khare S K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 2012, 23(1):25
    [61] Von Canstein H, Li Y, Leonhäuser J, et al. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol, 2002, 68(4):1938
    [62] He Z Q, Siripornadulsil S, Sayre R T, et al. Removal of mercury from sediment by ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere, 2011, 83(9):1249
    [63] Dash H R, Das S. Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad, 2012, 75:207
    [64] Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J, 2012, 69(2):278
  • 加載中
計量
  • 文章訪問數:  923
  • HTML全文瀏覽量:  274
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-07-05

目錄

    /

    返回文章
    返回
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164