Self-tuning method for a linear active disturbance rejection controller
-
摘要: 針對線性自抗擾控制器參數難于整定的問題,提出了一種基于動態響應過程時序數據挖掘的參數自整定算法.算法以線性自抗擾控制器中線性誤差反饋律的兩個增益信號回路的動態響應為參數調整對象,通過改進變收縮系數的隨機搜索算法進行參數整定,記錄動態響應過程數據,基于關聯關系挖掘得到控制參數調整策略應用于線性自抗擾控制器的參數自整定.為驗證本文提出的參數自整定方法的實際效果,以液壓自動位置控制系統為控制對象,分別采用階躍響應仿真和Monte Carlo實驗進行對比研究.結果表明,基于數據挖掘參數自整定的線性自抗擾控制器動態響應較好,魯棒性較強,改進了變收縮系數隨機搜索算法調整時間較長以及傳統線性自抗擾控制器超調較大的缺點,是一種具有實用性的線性自抗擾控制器參數自整定方法.Abstract: This paper introduces a parameter self-tuning algorithm based on dynamic response time series data mining to solve the parameter self-tuning difficulty of a linear active disturbance rejection controller(LADRC). In the algorithm,two gain signal loops' dynamic response of linear state error feedback(LSEF) is used as the parameter adjustment object. Through the parameters auto-tuned by NLJ algorithm and the process data recorded,the control parameter adjustment policy based on association mining is applied to LADRC parameter auto-tuning. To verify the actual effect of the parameter self-tuning method in this paper,a hydraulic automatic position control(HAPC) system is used as the control object. Step response simulation and Monte Carlo experiment show that the dynamic response of the system which is combined by HAPC and the controller is better,the robustness is stronger,the adjustment time is shorter than NLJ algorithm,and the overshoot is also less than the traditional LADRC controller. It is considered as a practical LADRC controller parameter self-tuning method.
-

計量
- 文章訪問數: 317
- HTML全文瀏覽量: 51
- PDF下載量: 28
- 被引次數: 0