Application of a four-dimensional space fractal interpolation algorithm in grade estimation
-
摘要: 克里金法是一種應用廣泛的低通濾波性插值方法,但其無法重建原始信息中的高頻、低頻和局部信息.分形插值算法可利用自相似性,在保留原始信息的基礎上,克服克里金插值中低通濾波的局限性,從而提高插值的準確性.本文在傳統分形插值算法的基礎上,結合地質空間信息,提出了適用于礦床品位估算的四維空間分形插值算法,并將其應用于鉬礦的品位估算.結果表明:在該鉬礦的品位估算中,四維空間分形插值算法明顯優于克里金法.Abstract: Kriging interpolation is a widely used low-pass filter interpolation method, but it cannot reconstruct the high-frequency, low-frequency and partial information of original information. Fractal interpolation using self-similarity, which can retain original information, overcomes the limitations of Kriging interpolation low-pass filters, thereby improving the interpolation accuracy. On the basis of the traditional fractal interpolation algorithm and in combination with geological spatial information, this paper introduces a four-dimensional space fractal interpolation algorithm suitable for ore grade estimation. The interpolation algorithm is applied to molybdenum ore grade estimation and then compared with the Kriging interpolation algorithm. The results show that the interpolation algorithm is superior to the Kriging interpolation algorithm.
-
Key words:
- mine exploration /
- grade estimation /
- interpolation algorithms /
- fractals /
- mean square error
-

計量
- 文章訪問數: 352
- HTML全文瀏覽量: 159
- PDF下載量: 7
- 被引次數: 0