Robust ear recognition using sparse representation of local features
-
摘要: 作為圖像局部特征區域的有效描述方法,局部二值模式是目前對二維圖像最有效的紋理分析特征之一.本文提出了基于局部二值模式特征的稀疏表示人耳識別方法.該識別算法首先提取訓練人耳圖像的局部二值模式特征描述子作為稀疏表示的字典,然后將測試樣本的局部二值模式特征描述子表示為字典中所有局部二值模式原子的稀疏線性組合,最后通過求解稀疏表示模型得到稀疏編碼系數,根據測試人耳圖像的重建誤差進行識別.在UND-J2人耳庫和USTB人耳庫上的實驗結果表明,基于局部二值模式特征的稀疏表示人耳識別方法對人耳圖像光照變化、姿態變化以及人耳遮擋具有更好的魯棒性,實現了更高的識別率.Abstract: As a local image feature description approach, LBP (local binary pattern) is regarded as one of the most effective textural features to describe images. In this paper, a general classification algorithm via sparse representation of LBP features is proposed for ear recognition. This algorithm expresses LBP features of the input ear image as a sparse combination of LBP features extracted from all the training ear images. The recognition performance for salt and pepper noise, Gaussian noise and various levels of random occlusion in which the location of occlusion is randomly chosen to simulate real scenario is investigated. Experimental results on USTB ear database reveal that when the test ear image is contaminated by noise or is occluded, the proposed approach exhibits a greater robustness and achieves a better recognition performance.
-
Key words:
- machine vision /
- sparse representation /
- binary patterns /
- ears /
- pattern recognition
-

計量
- 文章訪問數: 161
- HTML全文瀏覽量: 21
- PDF下載量: 9
- 被引次數: 0