Citation: | HUO Jiahao, ZHANG Xiaoying, GAO Kaiqiang, HUANGFU Wei, LONG Keping. Key technologies and trends in the development of industrial passive optical networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1641-1652. doi: 10.13374/j.issn2095-9389.2022.12.14.001 |
[1] |
ITU-T Study Group 15. ITU-T Recommendation G. 983 Series Broadband Passive Optical Network. Geneva: ITU-T Study Group 15, 2005
|
[2] |
Kramer G, Pesavento G. Ethernet passive optical network (EPON): Building a next-generation optical access network. IEEE Commun Mag, 2002, 40(2): 66 doi: 10.1109/35.983910
|
[3] |
ITU-T Study Group 15. ITU-T Recommendation G. 984 Series Gigabit Capable Passive Optical Network (G-PON) . Geneva: ITU-T Study Group 15, 2008
|
[4] |
Bonk R, Geng D, Khotimsky D, et al. 50G-PON: The first ITU-T higher-speed PON system. IEEE Commun Mag, 2022, 60(3): 48 doi: 10.1109/MCOM.001.2100441
|
[5] |
ITU-T Study Group 15. ITU-T Recommendation G. 987 Series 10 Gigabit Capable Passive Optical Network (XG-PON) . Geneva: ITU-T Study Group 15, 2016
|
[6] |
IEEE Computer Society. IEEE 802.3av-2009 CSMA/CD Access Method and Physical Layer Specifications Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks. New York: IEEE, 2009
|
[7] |
ITU-T Study Group 15. ITU-T Recommendation G. 9807 Series 10 Gigabit Capable Symmetric Passive Optical Network (XGS-PON). Geneva: ITU-T Study Group 15, 2016
|
[8] |
ITU-T Study Group 15. ITU-T Recommendation G. 989 Series 40-Gigabit-capable Passive Optical Networks (NG-PON2): General Requirements. Geneva: ITU-T Study Group 15, 2013
|
[9] |
Zhou Q Y, Zhang J, Zhu M, et al. Performance comparison of advanced modulation formats for low-bandwidth optics-based 50-Gb/s/λ PON at O-band // International Conference on Optical Communications and Networks. Qufu, 2021: 1
|
[10] |
Matsushita A, Nakamura M, Yamamoto S, et al. 41-Tbps C-Band WDM transmission with 10-bps/Hz spectral efficiency using 1-Tbps/λ signals. J Light Technol, 2020, 38(11): 2905
|
[11] |
Xin H Y, Kong D M, Zhang K, et al. 100 GBPS simplified coherent PON using carrier-suppressed PDM-PAM-4 and phase-recovery-free KK detection // 45th European Conference on Optical Communication (ECOC 2019). Dublin, 2019: 1
|
[12] |
Xin H Y, Zhang X L, Kong D M, et al. Carrier-recovery-free KK detection for PDM-bipolar-PAM in 100 Gb/s simplified coherent PON // Optical Fiber Communication Conference. San Francisco, 2021: F2H. 4
|
[13] |
Zhang J, Yu J J, Li X Y, et al. 200 Gbit/s/λ PDM-PAM-4 PON system based on intensity modulation and coherent detection. J Opt Commun Netw, 2020, 12(1): A1 doi: 10.1364/JOCN.12.0000A1
|
[14] |
Wang H Y, Torres-Ferrera P, Rizzelli G, et al. 200 Gbps/λ PON downstream C-band direct-detection links with≥ 29 dB power budget. Appl Sci, 2022, 12(7): 3538 doi: 10.3390/app12073538
|
[15] |
Wei J L, Rahman T, Calabrò S, et al. Experimental demonstration of advanced modulation formats for data center networks on 200 Gb/s lane rate IMDD links. Opt Express, 2020, 28(23): 35240 doi: 10.1364/OE.409905
|
[16] |
Kanai T, Fujiwara M, Igarashi R, et al. Symmetric 10 Gbit/s 40-km reach DSP-based TDM-PON with a power budget over 50 dB. Opt Express, 2021, 29(11): 17499 doi: 10.1364/OE.421917
|
[17] |
Kanai T, Koma R, Kani J I, et al. Future long-reach optical access network with digital coherent technologies // Conference on Lasers and Electro-Optics. San Jose, 2021: STh1I. 5
|
[18] |
Faruk M S, Li X, Nesset D, et al. Coherent passive optical networks: Why, when, and how. IEEE Commun Mag, 2021, 59(12): 112 doi: 10.1109/MCOM.010.2100503
|
[19] |
Taylor M G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photonics Technol Lett, 2004, 16(2): 674 doi: 10.1109/LPT.2003.823106
|
[20] |
Li Z X, Yin F, Huang X G, et al. Demonstration of a 50G-PON with a 45-dB power budget using an IQ-interleaved coherent detection scheme. Opt Express, 2021, 29(20): 32523 doi: 10.1364/OE.435034
|
[21] |
Gui T, Wang X F, Tang M, et al. Real-time demonstration of homodyne coherent bidirectional transmission for next-generation data center interconnects. J Light Technol, 2021, 39(4): 1231 doi: 10.1109/JLT.2021.3052826
|
[22] |
Zhang R, Chen Y W, Kuzmin K, et al. Intra-data center 120Gbaud/DP-16QAM self-homodyne coherent links with simplified coherent DSP // Optical Fiber Communication Conference. San Diego, 2022: W1G. 1
|
[23] |
Li B R, Nesset D, Liu D K, et al. DSP enabled next generation flexible PON for 50G and beyond // Optical Fiber Communication Conference. San Diego, 2022: M3G. 1
|
[24] |
Houtsma V E, van Veen D T. Investigation of modulation schemes for flexible line-rate high-speed TDM-PON. J Light Technol, 2020, 38(12): 3261
|
[25] |
Lee J, Dong P, Kaneda N, et al. Discrete multi-tone transmission for short-reach optical connections // 2016 Optical Fiber Communication Conference and Exhibition (OFC). Anaheim, 2016: 1
|
[26] |
Xing S Z, Li G Q, Chen J, et al. First demonstration of PS-QAM based flexible coherent PON in burst-mode with 300G peak-rate and record dynamic-range and net-rate product up to 7, 104 dB·Gbps // Optical Fiber Communications Conference. San Diego, 2022: 1
|
[27] |
Liang W X, Wang H D, Wei J L, et al. DSP-enabled 50G OOK-PON with beyond 29 dB power budget using O-band 10G DML and 10G APD. Opt Commun, 2022, 504: 127486 doi: 10.1016/j.optcom.2021.127486
|
[28] |
Wu X, Zhang J W, Lau A P T, et al. Low-complexity absolute-term based nonlinear equalizer with weight sharing for C-band 85-GBaud OOK transmission over a 100-km SSMF. Opt Lett, 2022, 47(6): 1565 doi: 10.1364/OL.454715
|
[29] |
Wang W, Zou D D, Wang X W, et al. 100 Gbit/s/λ DMT-PON system based on intensity modulation and heterodyne coherent detection. IEEE Photonics Technol Lett, 2021, 33(18): 1014 doi: 10.1109/LPT.2021.3079982
|
[30] |
Zhang J, Liu Q, Zhu M Y, et al. Beyond 200-Gb/s/λ DMT signal transmission with NGMI optimization and volterra equalization. J Light Technol, 2021, 39(18): 5837 doi: 10.1109/JLT.2021.3093910
|
[31] |
Le S T, Drenski T, Hills A, et al. Real-time 100 Gb/s IM/DD DMT with chirp managed laser supporting 400 Gb/CWDM-4 over 20 km // Optical Fiber Communications Conference. San Diego, 2022: 1
|
[32] |
Liang S Y, Jiang Z H, Qiao L, et al. Faster-than-nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion. IEEE Photonics J, 2018, 10(1): 1
|
[33] |
van Veen D T, Houtsma V E. Flexible 50G PON based on multi-rate PAM and CAP-4 with user interleaving // 45th European Conference on Optical Communication. Dublin, 2019: 1
|
[34] |
Izquierdo D, Altabas J A, Clemente J, et al. Flexible resource provisioning of coherent PONs based on non-orthogonal multiple access and CAP signals // 45th European Conference on Optical Communication (ECOC 2019). Dublin, 2019: 1
|
[35] |
Zhang J, Zhu M, Wang K H, et al. The best modulation format for symmetrical single-wavelength 50-Gb/s PON at O-band: PAM, CAP or DMT? // Optical Fiber Communication Conference. San Francisco, 2021: W1H. 3
|
[36] |
Mazur M, Dallachiesa L, Fontaine N K, et al. Real-time transmission over 2x55 km all 7-core coupled-core multi-core fiber link // Optical Fiber Communication Conference. San Diego, 2022: Th4A. 1
|
[37] |
Diamantopoulos N P P, Nishi H, Fujii T, et al. 4× 56-GBaud PAM-4 SDM transmission over 5.9-km 125-µm-cladding MCF using III-V-on-Si DMLs // 2020 Optical Fiber Communications Conference. San Diego, 2020: 1
|
[38] |
Mazur M, Ryf R, Fontaine N K, et al. Real-time MIMO transmission over field-deployed coupled-core multi-core fibers // Optical Fiber Communication Conference. San Diego, 2022: Th4B. 8
|
[39] |
Feng Z H, Xu L, Wu Q, et al. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream. Opt Express, 2017, 25(6): 5951 doi: 10.1364/OE.25.005951
|
[40] |
Zhang K, Zhuge Q B, Xin H Y, et al. Design and analysis of high-speed optical access networks in the O-band with DSP-free ONUs and low-bandwidth optics. Opt Express, 2018, 26(21): 27873 doi: 10.1364/OE.26.027873
|
[41] |
Bi M H, Xiao S L, Yi L L, et al. Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system. Opt Express, 2014, 22(6): 6925 doi: 10.1364/OE.22.006925
|
[42] |
Zhang K, Zhuge Q B, Xin H Y, et al. Demonstration of 50 Gb/s/λ symmetric PAM4 TDM-PON with 10 G-class optics and DSP-free ONUs in the O-band // 2018 Optical Fiber Communication Conference. San Diego, 2018: M1B. 5
|
[43] |
Rosales R, Cano I, Nesset D, et al. Achieving high budget classes in the downstream link of 50 G-PON. J Opt Commun Netw, 2021, 13(8): D13 doi: 10.1364/JOCN.426009
|
[44] |
Rosales R, Cano I N, Nesset D, et al. 50G-PON downstream link up to 40 km with a 1342 nm integrated EML+ SOA. IEEE Photonics Technol Lett, 2022, 34(6): 306 doi: 10.1109/LPT.2022.3152608
|
[45] |
Zhang J, Yu J J, Wey J S, et al. SOA pre-amplified 100 Gb/s/λ PAM-4 TDM-PON downstream transmission using 10 Gbps O-band transmitters. J Light Technol, 2020, 38(2): 185 doi: 10.1109/JLT.2019.2944558
|
[46] |
Li J H, Lin B J, He Y Q, et al. DSP-enhanced TWDM-PON with DSB modulation towards 100-GB/S // 2014 13th International Conference on Optical Communications and Networks (ICOCN). Suzhou, 2014: 1
|
[47] |
Li Z X, Li Y W, Luo S Y, et al. SOA amplified 100 Gb/s/λ PAM-4 TDM-PON supporting PR-30 power budget with> 18 dB dynamic range. Micromachines, 2022, 13(3): 342 doi: 10.3390/mi13030342
|
[48] |
Wang K H, Zhang J, Zhao L, et al. Mitigation of pattern-dependent effect in SOA at O-band by using DSP. J Light Technol, 2019, 38(3): 590
|
[49] |
Torres-Ferrera P, Wang H Y, Ferrero V, et al. 100 Gbps/λ PON downstream O-and C-band alternatives using direct-detection and linear-impairment equalization. J Opt Commun Netw, 2021, 13(2): A111 doi: 10.1364/JOCN.402437
|
[50] |
Xiang M, Fu S N, Xu O, et al. Advanced DSP enabled C-Band 112 Gbit/s/λ PAM-4 transmissions with severe bandwidth-constraint. J Light Technol, 2021, 40(4): 987
|
[51] |
Zhang J, Wang K H, Wei Y R, et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON at O-band supporting 26 dB+ loss budget using low-bandwidth optics and semiconductor optical amplifier // Optical Fiber Communication Conference. San Diego, 2020: Th1B. 3
|
[52] |
Xue L, Yi L L, Li P X, et al. 50-Gb/s TDM-PON based on 10G-class devices by optics-simplified DSP // 2018 Optical Fiber Communications Conference and Exposition (OFC). San Diego, 2018: 1
|
[53] |
Tang X Z, Qiao Y J, Chen Y W, et al. Digital pre-and post-equalization for C-band 112-Gb/s PAM4 short-reach transport systems. J Light Technol, 2020, 38(17): 4683 doi: 10.1109/JLT.2020.2993997
|
[54] |
Huang L Y, Xu Y X, Jiang W Q, et al. Performance and complexity analysis of conventional and deep learning equalizers for the high-speed IMDD PON. J Light Technol, 2022, 40(14): 4528 doi: 10.1109/JLT.2022.3165529
|
[55] |
Chen X, Antonelli C, Chandrasekhar S, et al. Kramers–Kronig receivers for 100-km datacenter interconnects. J Light Technol, 2018, 36(1): 79 doi: 10.1109/JLT.2018.2793460
|
[56] |
Lu D X, Boateng B, Zhou X, et al. High-speed PON downstream transmission based on pre-configured KK scheme with CD pre-compensation and direct detection. Opt Commun, 2022, 510: 127906 doi: 10.1016/j.optcom.2022.127906
|
[57] |
Tao M H, Zheng J Y, Dong X L, et al. Improved dispersion tolerance for 50G-PON downstream transmission via receiver-side equalization // Optical Fiber Communication Conference. San Diego, 2019: M2B. 3
|
[58] |
Wang H Y, Torres-Ferrera P, Rizzelli G, et al. 100 Gbps/λ C-band CD digital pre-compensated and direct-detection links with simple non-linear compensation. IEEE Photonics J, 2021, 13(4): 1
|
[59] |
Li B R, Zhang K, Zhang D C, et al. DSP enabled next generation 50G TDM-PON. J Opt Commun Netw, 2020, 12(9): D1 doi: 10.1364/JOCN.391904
|
[60] |
Xi Y, Bi M H, Miao X, et al. A modified Volterra equalizer for compensation distortion in C-band DML-based short reach limited-bandwidth system with 80-Gb/s PAM-4 signals. Opt Commun, 2022, 513: 128105 doi: 10.1016/j.optcom.2022.128105
|
[61] |
Xue L, Lin R, Van Kerrebrouck J, et al. 100G PAM-4 PON with 34 dB power budget using joint nonlinear tomlinson-harashima precoding and Volterra equalization // European Conference on Optical Communication (ECOC). Bordeaux, 2021: 1
|
[62] |
Yang C W, Ye T, Zhang K, et al. A simple and accurate method to estimate the nonlinear performance of VCSEL IM-DD system // 2022 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, 2022: 1
|
[63] |
Kaneda N, Lee J, Chen Y K. Nonlinear equalizer for 112-Gb/s SSB-PAM4 in 80-km dispersion uncompensated link. // Optical Fiber Communication Conference, 2017: Tu2D. 5
|
[64] |
Cho J, Le S T. Volterra equalization to compensate for transceiver nonlinearity: Performance and pitfalls. // 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022: 1
|
[65] |
Reza A G, Rhee J K K. Blind nonlinearity mitigation of 10G DMLs using sparse Volterra equalizer in IM/DD PAM-4 transmission systems. Opt Fiber Technol, 2020, 59: 102322 doi: 10.1016/j.yofte.2020.102322
|
[66] |
Chan D W U, Zhou G, Wu X, et al. A compact 112-Gbaud PAM-4 silicon photonics transceiver for short-reach interconnects. J Light Technol, 2022, 40(8): 2265 doi: 10.1109/JLT.2022.3141906
|
[67] |
Li G Q, Li Z Y, Ha Y, et al. Performance assessments of joint linear and nonlinear pre-equalization schemes in next generation IM/DD PON. J Light Technol, 2022, 40(16): 5478 doi: 10.1109/JLT.2022.3180589
|
[68] |
Batista E L O, Seara R. On the performance of adaptive pruned Volterra filters. Signal Process, 2013, 93(7): 1909 doi: 10.1016/j.sigpro.2013.02.003
|
[69] |
Kuech F, Kellermann W. Orthogonalized power filters for nonlinear acoustic echo cancellation. Signal Process, 2006, 86(6): 1168 doi: 10.1016/j.sigpro.2005.09.014
|
[70] |
Li J C, Wang Z, Li X F, et al. Single-span IM/DD transmission over 120-km SMF with a silicon photonic mach-zehnder modulator and THP // Optical Fiber Communication Conference. San Diego, 2022: M2H. 3
|
[71] |
Zhang J W, Yu J J, Shi J Y, et al. 64-Gb/s/A downstream transmission for PAM-4 TDM-PON with centralized DSP and 10G low-complexity receiver in C-band // 2017 European Conference on Optical Communication (ECOC). Gothenburg, 2017: 1
|
[72] |
Luo S Y, Li Z X, Qu Y Z, et al. 112-Gb/s/λ downstream transmission for TDM-PON with 31-dB power budget using 25-Gb/s optics and simple DSP in ONU // Optical Fiber Communication Conference. San Diego, 2020: Th3K. 4
|
[73] |
An S H, Li J C, Li X F, et al. FTN SSB 16-QAM signal transmission and direct detection based on tomlinson-harashima precoding with computed coefficients. J Light Technol, 2021, 39(7): 2059 doi: 10.1109/JLT.2020.3046717
|
[74] |
Zhu Y X, Wu Q, Yin L J, et al. Faster-than-nyquist subcarrier modulation utilizing digital brick-wall filter-based THP for band-limited DML-DD systems // 2021 European Conference on Optical Communication (ECOC). Bordeaux, 2021: 1
|
[75] |
劉群, 杜慧琴, 吳香林. 短距光傳輸系統中基于PAM4調制的帶限接收技術. 電信科學, 2018, 34(3):118
Liu Q, Du H Q, Wu X L. A band-limited receiver technology based on PAM4 modulation for the short distance optical transmission system. Telecommun Sci, 2018, 34(3): 118
|
[76] |
Li F, Luo Z B, Yin M Z, et al. Architectures and key DSP techniques of next generation passive optical network (PON) // 2022 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, 2022: 1
|
[77] |
B?cherer G, Steiner F, Schulte P. Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Trans Commun, 2015, 63(12): 4651 doi: 10.1109/TCOMM.2015.2494016
|
[78] |
Zhang S L, Yaman F. Constellation design with geometric and probabilistic shaping. Opt Commun, 2018, 409: 7 doi: 10.1016/j.optcom.2017.08.063
|
[79] |
Li X Y, Yu J J, Zhao L, et al. 1-Tb/s photonics-aided vector millimeter-wave signal wireless delivery at D-band // 2018 Optical Fiber Communications Conference and Exposition (OFC). San Diego, 2018: 1
|
[80] |
Jia S, Zhang L, Wang S W, et al. 2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J Light Technol, 2020, 38(17): 4715 doi: 10.1109/JLT.2020.2995702
|
[81] |
Zhao L, Sang B H, Shi J T, et al. Demonstration of 74.7 Gbit/s 4096QAM OFDM E-band wireless delivery over 700 m employing advanced DSP // Optical Fiber Communication Conference. San Diego, 2022: M1C. 1
|
[82] |
Yu Y K, Choi M R, Bo T W, et al. Low-complexity second-order Volterra equalizer for DML-based IM/DD transmission system. J Light Technol, 2019, 38(7): 1735
|
[83] |
Zhang Q W, Duan S H, Wang Z C, et al. Low complexity Volterra nonlinear equalizer based on weight sharing for 50 Gb/s PAM4 IM/DD transmission with 10G-class optics. Opt Commun, 2022, 508: 127762 doi: 10.1016/j.optcom.2021.127762
|
[84] |
Diamantopoulos N P, Nishi H, Kobayashi W, et al. On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems. J Light Technol, 2018, 37(4): 1214
|
[85] |
Matsuda K, Matsumoto R, Suzuki N. Hardware-efficient adaptive equalization and carrier phase recovery for 100-Gb/s/λ-based coherent WDM-PON systems. J Light Technol, 2018, 36(8): 1492 doi: 10.1109/JLT.2017.2784804
|
[86] |
Yin X, Coudyzer G, Ossieur P, et al. Linear burst-mode receivers for DSP-enabled passive optical networks // Optical Fiber Communication Conference. San Francisco, 2021: M3G. 1
|
[87] |
Li G Q, Xing S Z, Li Z Y, et al. 200-Gb/s/λ coherent TDM-PON with wide dynamic range of> 30-dB based on local oscillator power adjustment // Optical Fiber Communication Conference. San Diego, 2022: Th3E. 3
|
[88] |
Koma R, Fujiwara M, Kani J I, et al. Burst-mode digital signal processing that pre-calculates FIR filter coefficients for digital coherent PON upstream. J Opt Commun Netw, 2018, 10(5): 461 doi: 10.1364/JOCN.10.000461
|
[89] |
Koma R, Fujiwara M, Kani J I, et al. Fast feed-forward optical and electrical gain control to extend the dynamic range of the burst-mode digital coherent receiver for high-speed TDM-PON systems. J Light Technol, 2021, 40(3): 647
|
[90] |
Zhang J A, Zhou Q Y, Zhu M, et al. Demonstration of all-digital burst clock and data recovery for symmetrical 50 Gb/s/λ PON based on low-bandwidth optics. Opt Commun, 2022, 516: 128266 doi: 10.1016/j.optcom.2022.128266
|
[91] |
Torres-Ferrera P, Wang H Y, Ferrero V, et al. Optimization of band-limited DSP-aided 25 and 50 Gb/s PON using 10G-class DML and APD. J Light Technol, 2019, 38(3): 608
|
[92] |
Koma R, Fujiwara M, Kani J I, et al. Demonstration of real-time burst-mode digital coherent reception with wide dynamic range in DSP-based PON upstream. J Light Technol, 2016, 35(8): 1392
|
[93] |
Zhou X, Zhong K P, Huo J H, et al. 112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier. Opt Express, 2016, 24(15): 17359 doi: 10.1364/OE.24.017359
|
[94] |
Zhou X, Zhong K P, Huo J H, et al. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier // 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Prague, 2016: 1
|
[95] |
Gao Y Y, Gao W P, Luo M, et al. 4× 112 Gb/s/λ MCF transmission using field PDM-PAM4 and coherent detection for datacenter applications. IEEE Photonics J, 2022, 14(1): 1
|
[96] |
Gao W P, Gao Y Y, Lu D X, et al. Experimental demonstration of 448 Gb/s PS-PDM-PAM8 coherent transmission over multi-core fiber. Opt Fiber Technol, 2022, 69: 102849 doi: 10.1016/j.yofte.2022.102849
|
[97] |
Gao W P, Gao Y Y, Luo M, et al. Experimental investigation of PS-PDM-PAM8 coherent transmission over multi-core fiber // 2021 Asia Communications and Photonics Conference (ACP). Shanghai, 2021: 1
|