<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG Yong, WU Ai-xiang, YANG Jun, YANG Gang-feng, WANG Zhen-qi, LI Jian. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004
Citation: WANG Yong, WU Ai-xiang, YANG Jun, YANG Gang-feng, WANG Zhen-qi, LI Jian. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering, 2023, 45(8): 1281-1292. doi: 10.13374/j.issn2095-9389.2022.11.12.004

Progress and prospective of the mining key technology for deep metal mines

doi: 10.13374/j.issn2095-9389.2022.11.12.004
More Information
  • Corresponding author: E-mail: wuaixiang@126.com
  • Received Date: 2022-11-12
    Available Online: 2022-12-13
  • Publish Date: 2023-08-25
  • Mineral resources are essential to human life and social development and play an important role in national security and economic development. China has huge reserves of metal mineral resources, but the per capita possession is low. Especially, it is difficult for iron, copper, aluminum, and other metal mineral resources to be self-sufficient and heavily dependent on foreign countries. Because of the massive exploitation of metal mineral resources, shallow resources are becoming exhausted, and deep mining will become the main force for the supply of metal mineral resources in the future. “Going deep into the earth” corresponds to the current state of national resource strategy development. It is found that there is still a certain gap between China’s deep metal mining technology and mining depth compared with internationally developed mining countries. The mining depth of foreign mining countries is mostly over 3000 m, with three South African mines having a mining depth of over 4000 m, whereas the mining depth of Chinese mines is mostly below 2000 m, and most of the metal mines have not yet broken through the kilometer depth. Furthermore, the level of mining technology in established mining countries abroad is high, and the degree of mechanization and intelligence is high. Deep mining technology in China is insufficient to meet the need for deep mining. China still has a large gap compared with internationally developed countries; therefore, the related rock mass mechanics theory and mining technology are no longer suitable for deep metal mining. In this paper, we summarize the research status of four major theories and technologies for deep mining of metal mines, namely, deep rock mechanics, deep well building and lifting, green mining, and intelligent mining, and proposes future research emphases. Finally, based on the research status and existing problems of the key technologies and theories of deep metal mining at present, the paper puts forward three strategic ideas: deep-part construction of a super-large intelligent autonomous mine, in-situ fluidized mining, and rock mechanics. With the continuous increase of mining depth, it is urgent to study the related theory and technology of deep mining of metal mines so as to ensure the safe, efficient, economical, and environmentally friendly mining of deep metal mineral resources and ensure the resource security of our country.

     

  • loading
  • [1]
    邢立亭, 徐征和, 王青. 礦產資源開發利用與規劃. 北京: 冶金工業出版社, 2008

    Xing L T, Xu Z H, Wang Q. Exploitation, Utilization and Planning of Mineral Resources. Beijing: Metallurgical Industry Press, 2008
    [2]
    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1

    Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1
    [3]
    李芳琴, 李建武. 金屬礦產資源經濟重要性評估研究. 中國礦業, 2018, 27(12):6

    Li F Q, Li J W. Study on economic importance assessment of metal mineral resources. China Min Mag, 2018, 27(12): 6
    [4]
    馮進城. 淺析我國金屬礦產資源儲備體系的構建. 理論月刊, 2010(12):164

    Feng J C. Analysis on the construction of China’s metal mineral resources reserve system. Theory Mon, 2010(12): 164
    [5]
    王運敏. 金屬礦采礦工業面臨的機遇和挑戰及技術對策. 現代礦業, 2011, 27(1):1

    Wang Y M. Opportunities and challenges to metal mine mining industry and the technical countermeasures. Mod Min, 2011, 27(1): 1
    [6]
    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236

    Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236
    [7]
    Els F. Idaho silver mine shaft sunk to final depth of 9587 feet [EB/OL]. (2016-05-24)[2022-11-12]. http://www.mining. com/idaho-silver-mine-shaft-sunk-final-depth-9587-feet/
    [8]
    找礦突破戰略行動綱要(2011—2020年)正式發布. 地質裝備, 2012, 13(4): 3

    The outline of strategic action for ore prospecting breakthrough (2011—2020) was officially released. Equip Geotech Eng, 2012, 13(4): 3
    [9]
    習近平. 為建設世界科技強國而奮斗 [EB/OL]. (2016-05-31)[2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm

    Xi J P. Struggling for building a world powerful country in science and technology [EB/OL]. (2016-05-31) [2022-11-12]. http://www.xinhuanet.com/politics/2016-05/31/c_1118965169.htm
    [10]
    自然資源部將組織實施《戰略性礦產找礦行動(2021—2035年)》. 礦產勘查, 2021, 12(4): 988

    The ministry of natural resources will organize and implement the strategic mineral prospecting action (2021—2035). Miner Explor, 2021, 12(4): 988
    [11]
    Hedley D G F. Rockburst Handbook for Ontario Hardrock Mines. Ontario: Energy, Mines and Resources Canada, 1992
    [12]
    趙生才. 深部高應力下的資源開采與地下工程——香山會議第175次綜述. 地球科學進展, 2002, 17(2):295

    Zhao S C. Resource exploitation and underground engineering in deep stress—175th summary of Xiangshan conference. Adv Earth Sci, 2002, 17(2): 295
    [13]
    Bieniawski Z T. Strata Control in Mineral Engineering. United States: U. S. Department of Energy, 1986
    [14]
    Dong L J, Tong X J, Li X B, et al. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Clean Prod, 2019, 210: 1562 doi: 10.1016/j.jclepro.2018.10.291
    [15]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [16]
    李夕兵. 分區破裂化正確認識與準確定位對金屬礦山深部開采的意義重大// 新觀點新學說學術沙龍文集 21. 北京, 2008: 32

    Li X B. Correct understanding and accurate positioning of zonal fracturing is of great significance to deep mining of metal mines // Proceedings of Academic Salon of New Views and New Theories 21. Beijing, 2008: 32
    [17]
    Bolstad D D. Rockburst control research by the US bureau of mines // Rockbursts and Seismicity in Mines. Rotterdam, 1990
    [18]
    李夕兵, 古德生. 深井堅硬礦巖開采中高應力的災害控制與破碎誘變 // 香山第175次科學會議. 北京, 2002: 101

    Li X B, Gu D S. Disaster control and crushing mutagenesis of high stress in hard mining of deep wells // The 175th Scientific Conference of Xiangshan. Beijing, 2002: 101
    [19]
    江飛飛, 周輝, 劉暢, 等. 地下金屬礦山巖爆研究進展及預測與防治. 巖石力學與工程學報, 2019, 38(5):956

    Jiang F F, Zhou H, Liu C, et al. Progress, prediction and prevention of rockbursts in underground metal mines. Chin J Rock Mech Eng, 2019, 38(5): 956
    [20]
    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803

    He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803
    [21]
    Australian Centre for Geomechanics. ACG research [EB/OL]. (2016-09-20)[2022-11-12]. http://acg.uwa.edu.au/acg -research/
    [22]
    Durrheim R, Ogasawara H, Nakatani M, et al. Observational studies to mitigate seismic risks in mines — A new Japanese–South African collaborative research project // Proceedings of the Fifth International Seminar on Deep and High Stress Mining", "Proceedings of the International Conference on Deep and High Stress Mining. Perth, 2010: 11
    [23]
    I2Mine. Project overview [EB/OL]. [2022-11-12]. http://www.i2mine.eu
    [24]
    CHPM2030. Combined heat, power and metal extraction [EB/OL]. [2022-11-12]. http://www.chpm2030.eu
    [25]
    Johnson D B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol, 2014, 30: 24 doi: 10.1016/j.copbio.2014.04.008
    [26]
    李玉生. 國內外礦山沖擊的研究及評述. 煤炭科研參考資料, 1982(4):1

    Li Y S. Research and review of mine impact at home and abroad. Ref Mater Coal Sci Res, 1982(4): 1
    [27]
    郭金峰, 刁心宏, 張傳信, 等. 冬瓜山深埋銅礦床開采技術的研究. 金屬礦山, 2002(1):10

    Guo J F, Diao X H, Zhang C X, et al. On the research of the mining technology for Dongguashan deep-lying copper deposit. Met Mine, 2002(1): 10
    [28]
    邊振輝. 基建勘探在超深井礦山建設中的應用: 以思山嶺鐵礦為例. 現代礦業, 2020, 36(8):68

    Bian Z H. Application of infrastructure prospecting in mine construction with ultra-deep well: Taking sishanling iron mine as an example. Mod Min, 2020, 36(8): 68
    [29]
    古德生. 地下金屬礦采礦科學技術的發展趨勢. 黃金, 2004, 25(1):18

    Gu D S. The development tendency of mining science and technology of underground metal mine. Gold, 2004, 25(1): 18
    [30]
    姜耀東, 潘一山, 姜福興, 等. 我國煤炭開采中的沖擊地壓機理和防治. 煤炭學報, 2014, 39(2):205

    Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205
    [31]
    國務院關于印發“十三五”國家科技創新規劃的通知. 中華人民共和國國務院公報, 2016(24): 6

    Notice of the state council municipality on printing and distributing the 13th five-year national science and technology innovation plan. Gazette State Counc People’s Repub China, 2016(24): 6
    [32]
    楊濤. 談井下采礦技術及井下采礦的發展趨勢. 當代化工研究, 2020(10):9

    Yang T. Discussion on underground mining technology and development trend of underground mining. Mod Chem Res, 2020(10): 9
    [33]
    李學鋒, 譚定新, 劉湘蓮. 金屬礦山深部礦體開采工藝的技術改造. 采礦技術, 2014, 14(4):10

    Li X F, Tan D X, Liu X L. Technical transformation of mining technology of deep metal ore body in mine. Min Technol, 2014, 14(4): 10
    [34]
    謝和平, 馮夏庭. 災害環境下重大工程安全性的基礎研究. 北京: 科學出版社, 2009

    Xie H P, Feng X T. Basic Research on Safety of Major Projects in Disaster Environment. Beijing: Science Press, 2009
    [35]
    Bready B H G, Brown E T. Rock Mechanics for Underground Mining. New York: Kluwer Academic Publishers, 2005
    [36]
    謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161

    Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161
    [37]
    康紅普, 馮彥軍. 定向水力壓裂工作面煤體應力監測及其演化規律. 煤炭學報, 2012, 37(12):1953

    Kang H P, Feng Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution. J China Coal Soc, 2012, 37(12): 1953
    [38]
    康紅普, 王國法, 姜鵬飛, 等. 煤礦千米深井圍巖控制及智能開采技術構想. 煤炭學報, 2018, 43(7):1789

    Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m. J China Coal Soc, 2018, 43(7): 1789
    [39]
    劉志強, 宋朝陽, 程守業, 等. 千米級豎井全斷面科學鉆進裝備與關鍵技術分析. 煤炭學報, 2020, 45(11):3645

    Liu Z Q, Song Z Y, Cheng S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts. J China Coal Soc, 2020, 45(11): 3645
    [40]
    梁鵬飛, 冷奎, 馬倩. 金屬礦山深井提升關鍵技術探討. 遼寧工業大學學報(自然科學版), 2018, 38(1):29

    Liang P F, Leng K, Ma Q. Research on the key hoisting technology in deep shafts of metal mines. J Liaoning Univ Technol, 2018, 38(1): 29
    [41]
    韓瑞軍, 王會來, 張偉. 深井多繩摩擦提升鋼絲繩研究. 有色設備, 2019(2):102

    Han R J, Wang H L, Zhang W. Discussion of multi-rope friction hoisting rope in deep shaft. Nonferrous Metall Equip, 2019(2): 102
    [42]
    趙國彥, 吳攀, 裴佃飛, 等. 基于綠色開采的深部金屬礦開采模式與技術體系研究. 黃金, 2020, 41(9):58

    Zhao G Y, Wu P, Pei D F, et al. Study on the mining mode in deep metal mines and its technological system based on green mining. Gold, 2020, 41(9): 58
    [43]
    劉曉慧. 尾礦膏體處置將成金屬礦綠色開采主趨勢. 中國礦業報, 2018-6-20(3)

    Liu X H. Tailings paste disposal will become the main trend of green mining of metal mines. China Mining News, 2018-6-20(3)
    [44]
    阮竹恩, 吳愛祥, 焦華喆, 等. 我國全尾砂料漿濃密研究進展與發展趨勢. 中國有色金屬學報, 2022, 32(1):286

    Ruan Z E, Wu A X, Jiao H Z, et al. Advances and trends on thickening of full-tailings slurry in China. Chin J Nonferrous Met, 2022, 32(1): 286
    [45]
    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1

    Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1
    [46]
    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015

    Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015
    [47]
    Kagermann H, Wahlster W, Helbig J. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group, 2015
    [48]
    Wang L H. From intelligence science to intelligent manufacturing. Engineering, 2019, 5(4): 615 doi: 10.1016/j.eng.2019.04.011
    [49]
    周劍. 企業兩化融合管理體系構建研究. 現代產業經濟, 2013(11):16

    Zhou J. Research on the construction of enterprise integration management system. Mod Ind Econ, 2013(11): 16
    [50]
    Gustafson A, Lipsett M, Schunnesson H, et al. Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines. Int J Min Reclam Environ, 2014, 28(5): 342
    [51]
    Li J G, Zhan K. Intelligent mining technology for an underground metal mine based on unmanned equipment. Engineering, 2018, 4(3): 381 doi: 10.1016/j.eng.2018.05.013
    [52]
    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1

    Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1
    [53]
    謝和平, 王金華, 鞠楊. 煤炭革命的戰略與方向. 北京: 科學出版社, 2018

    Xie H P, Wang J H, Ju Y. Coal Industry Reform: Strategies and Directions. Beijing: Science Press, 2018
    [54]
    Ranjith P G, Zhao J, Ju M H, et al. Opportunities and challenges in deep mining: A brief review. Engineering, 2017, 3(4): 546 doi: 10.1016/J.ENG.2017.04.024
    [55]
    謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547

    Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547
    [56]
    謝和平, 高峰, 鞠楊, 等. 深地科學領域的若干顛覆性技術構想和研究方向. 工程科學與技術, 2017, 49(1):1

    Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth. Adv Eng Sci, 2017, 49(1): 1
    [57]
    吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255

    Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255
    [58]
    梁衛國, 趙陽升, 徐素國, 等. 原位溶浸采礦理論研究. 太原理工大學學報, 2012, 43(3):382

    Liang W G, Zhao Y S, Xu S G, et al. Theoretical study of in situ solution mining. J Taiyuan Univ Technol, 2012, 43(3): 382
    [59]
    Bhargava S K, Ram R, Pownceby M, et al. A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151: 10 doi: 10.1016/j.hydromet.2014.10.015
    [60]
    屠世浩, 郝定溢, 苗凱軍, 等. 深部采選充一體化礦井復雜系統協同開采. 中國礦業大學學報, 2021, 50(3):431

    Tu S H, Hao D Y, Miao K J, et al. Research of synergetic mining for mining, dressing and backfilling integrated deep mines with complicated systems. J China Univ Min Technol, 2021, 50(3): 431
    [61]
    孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1

    Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1
    [62]
    羅香玉, 李嘉楠, 郎丁. 智慧礦山基本內涵、核心問題與關鍵技術. 工礦自動化, 2019, 45(9):61

    Luo X Y, Li J N, Lang D. Basic connotation, core problems and key technologies of wisdom mine. Ind Mine Autom, 2019, 45(9): 61
    [63]
    呂鵬飛, 何敏, 陳曉晶, 等. 智慧礦山發展與展望. 工礦自動化, 2018, 44(9):84

    Lyu P F, He M, Chen X J, et al. Development and prospect of wisdom mine. Ind Mine Autom, 2018, 44(9): 84
    [64]
    趙明磊. 智慧礦山框架與發展前景研究. 科學技術創新, 2019(23):180 doi: 10.3969/j.issn.1673-1328.2019.23.109

    Zhao M L. Research on the framework and development prospect of intelligent mine. Sci Technol Innov, 2019(23): 180 doi: 10.3969/j.issn.1673-1328.2019.23.109
    [65]
    張永民. 解讀智慧地球與智慧城市. 中國信息界, 2010(10):23

    Zhang Y M. Interpretation of smart earth and smart city. Inf China, 2010(10): 23
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (427) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164