<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Turn off MathJax
Article Contents
CHANG Ziyong, LI Yujiao, SHEN Zhengchang, ZOU Laichang, WANG Qiankun, SUN Zhongmei, WANG Huajun. Advancements in the application and mechanism of fine-grained mineral flotation collectors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.23.003
Citation: CHANG Ziyong, LI Yujiao, SHEN Zhengchang, ZOU Laichang, WANG Qiankun, SUN Zhongmei, WANG Huajun. Advancements in the application and mechanism of fine-grained mineral flotation collectors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.23.003

Advancements in the application and mechanism of fine-grained mineral flotation collectors

doi: 10.13374/j.issn2095-9389.2022.09.23.003
More Information
  • The poor floatability of fine- and ultrafine-grained minerals, including sulfide and oxide minerals, is a huge issue confronting the mineral industry. Collectors are critical to the flotation of fine-grained minerals; therefore, developing high efficiency collectors has always been a hot research topic for industries and academia. This work has systematically reviewed the advancements in the development of collectors for fine mineral flotation in the last decades as well as provides an outlook for prospective studies. Collectors can be divided into sulfide and oxide mineral collectors, which can be further divided into ionic collectors, nonionic collectors, nonpolar oily collectors, nanocollectors, and biologic collectors based on their chemical composition. For sulfide minerals, ionic collectors mainly include xanthate, phosphate, and diethyldithiocarbamate, which are soluble in water and are able to dissociate sulfur-containing anions to interact with sulfide minerals. Some oily collectors and nanocollectors can also be used for the flotation of ultrafine sulfide minerals. For oxide minerals, the commonly used anionic collectors are hydroxamate, phosphate, arsenate, and fatty acid, while cationic collectors mainly comprise amine collectors. Nonionic and biologic collectors are used in oxide mineral flotation. Mechanisms underpinning the adsorption of collectors on the mineral surface include electrostatic interactions, chelation interactions, hydrogen bonding, chemical bonding, and metal-ion coordination. In addition, composite collectors, such as anionic/anionic collectors, anionic/cationic collectors, cationic/cationic collectors, and ionic/nonionic collectors, exhibit high collection capability for fine-grained minerals compared to single collectors. This is because they can promote collector adsorption on mineral surfaces through a series of synergistic interactions, such as co-adsorption, charge compensation, function complementarity, and variations in the critical micelle concentration. The rapid development of computational chemistry and artificial intelligence can help in investigating the quantitative relationship between the molecular structures of collectors and their collecting capability for fine minerals, thereby promoting the development of highly efficient novel collectors that uses shorter time for flotation. Increased effort is required for the development and utilization of harmless green collectors due to the rigid environmental requirement, and they are vital to the development of the mineral industry. In addition, nanocollectors will also gain increasing attention due to their unique physical and chemical properties and advantages over conventional collectors. Therefore, this paper is of great guiding significance for the development and application of fine-grained mineral flotation collectors.

     

  • loading
  • [1]
    Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [2]
    杜鳳梅, 王金瑋, 齊曉娜. 微細粒礦物分選技術研究進展. 世界有色金屬, 2021(11): 178

    Du F M, Wang J W, Qi X N. Research Progress on separation technology of fine minerals. World Nonferrous Met, 2021(11): 178
    [3]
    姚偉, 李茂林, 崔瑞, 等. 微細粒礦物的分選技術. 現代礦業. 2015, 3101: 66

    Yao Wei, Li Maolin, Cui Rui, et al. Beneficiation technology for microfine disseminated minerals. Modern Mining, 2015, 3101: 66
    [4]
    曾理, 姚占珍. 微細粒浮選回收尾礦中有用組分. 世界有色金屬. 2019(5): 51

    Zeng L, Yao Z Z. Recycle useful components in tailings by fine particle flotation. World Nonferrous Met, 2019(5): 51
    [5]
    Manouchehri H R. Magnetic conditioning of sulfide minerals to improve recovery of fines in flotation—a plant practice. Miner Metall Process, 2018, 35(1): 46
    [6]
    趙玉龍, 張鶴, 余俊甫, 等. 納米氣泡在微細粒礦物浮選中的應用研究現狀. 凈水技術, 2021, 40(2): 127

    Zhao Y L, Zhang H, Yu J F, et al. Application research status of nano-bubbles in micro-fine mineral flotation. Water Purif Technol, 2021, 40(2): 127
    [7]
    Farrokhpay S, Filippov L, Fornasiero D. Flotation of fine particles: A review. Miner Process Extr Metall Rev, 2021, 42(7): 473 doi: 10.1080/08827508.2020.1793140
    [8]
    徐龍華, 田佳, 巫侯琴, 等. 組合捕收劑在礦物表面的協同效應及其浮選應用綜述. 礦產保護與利用, 2017(2): 107

    Xu L H, Tian J, Wu H Q, et al. A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation. Conserv Util Miner Resour, 2017(2): 107
    [9]
    王建軍, 衛召, 韓海生, 等. 鎢礦浮選藥劑設計與組裝. 金屬礦山, 2021(6): 26

    Wang J J, Wei Z, Han H S, et al. Design and assembly of flotation reagents of tungsten minerals. Met Mine, 2021(6): 26
    [10]
    薛晨, 魏志聰. 云南某低品位鉛鋅礦鉛鋅分離試驗研究. 礦冶, 2017, 26(3): 13

    Xue C, Wei Z C. Test study on lead-zinc separation of a low grade lead-zinc ore in Yunnan. Min Metall, 2017, 26(3): 13
    [11]
    王瀾. 乳液顆粒捕收劑對黃銅礦和蛇紋石的浮選作用及機理研究[學位論文]. 贛州: 江西理工大學, 2020

    Wang L. Study on Flotation Effect and Mechanism of Emulsion Particle Collector on Chalcopyrite and Serpentine [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2020
    [12]
    鐘宏, 張湘予, 馬鑫, 等. 酰氨基黃藥的制備及其對黃銅礦、黃鐵礦的浮選性能研究. 礦產保護與利用, 2021, 41(2): 13

    Zhong H, Zhang X Y, Ma X, et al. Study on the preparation of amido xanthate and its flotation performance for chalcopyrite and pyrite. Conserv Util Miner Resour, 2021, 41(2): 13
    [13]
    Chanturia V A, Matveeva T N, Ivanova T A, et al. Mechanism of interaction of cloud point polymers with platinum and gold in flotation of finely disseminated precious metal ores. Miner Process Extr Metall Rev, 2016, 37(3): 187 doi: 10.1080/08827508.2016.1168416
    [14]
    Huang X P, Jia Y, Cao Z F, et al. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite. Colloids Surf A Physicochem Eng Asp. 2019, 583C
    [15]
    卜顯忠, 楊璐, 史娟娟. 新型選銅捕收劑在銅鋅硫化礦浮選中的應用. 礦業研究與開發, 2017, 37(8): 25

    Bu X Z, Yang L, Shi J J. Application of a new copper collector in the flotation separation of copper-zinc sulfate ore. Min Res Dev, 2017, 37(8): 25
    [16]
    朱厚生. Z-200捕收劑在多寶山銅業選礦廠生產應用實踐. 有色金屬(選礦部分), 2018(4): 82

    Zhu H S. Production practice of Z-200 collector in Duobaoshan copper concentrator. Nonferrous Met (Miner Process Sect), 2018(4): 82
    [17]
    朱慧敏, 包麒鈺, 羅紫亭, 等. 黃銅礦吸附O-異丙基-N, N-二乙基硫氨酯的動力學和熱力學研究. 礦產保護與利用, 2021, 41(2): 23

    Zhu H M, Bao Q Y, Luo Z T, et al. Adsorption kinetics and thermodynamics of O-isopropyl-N, N-diethyl thionocarbamate on chalcopyrite surfaces. Conserv Util Miner Resour, 2021, 41(2): 23
    [18]
    林清泉, 吳啟明, 戴智飛, 等. 微細粒輝鉬礦浮選機理研究. 礦冶工程, 2021, 41(3): 37

    Lin Q Q, Wu Q M, Dai Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore. Min Metall Eng, 2021, 41(3): 37
    [19]
    王瀾, 艾光華, 楊冰, 等. 納米技術浮選技術研究進展. 礦產綜合利用, 2020(1): 29

    Wang L, Ai G H, Yang B, et al. Development of nano flotation technology. Multipurp Util Miner Resour, 2020(1): 29
    [20]
    楊冰. 蛇紋石存在下納米顆粒強化回收微細粒黃銅礦與黃鐵礦試驗及機理研究[學位論文]. 贛州: 江西理工大學, 2019

    Yang B. Experimental and Mechanism Study on Nanoparticle Reinforced Recovery of Fine-Grained Chalcopyrite and Pyrite in the Presence of Serpentine [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2019
    [21]
    丁軍. 離子型納米捕收劑性能及其與微細粒黃銅礦作用機理研究[學位論文]. 贛州: 江西理工大學, 2018

    Ding J. Study on the Performance of Ionic Nano-Collectors and Its Mechanism of Reaction with Micro Fine Chalcopyrite [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2018
    [22]
    康倩. 乳液聚合制備納米粒子捕收劑及其表征[學位論文]. 贛州: 江西理工大學, 2016

    Kang Q. The Synthesis of Nanoparticle Collector with Emulsion Polymerization and Its Characterization [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016
    [23]
    He G C, Ding J, Huang C H, et al. Synthesis of nanoparticle emulsion collector HNP and its application in microfine chalcopyrite flotation. IOP Conf Ser: Mater Sci Eng, 2018, 292: 012029 doi: 10.1088/1757-899X/292/1/012029
    [24]
    Yang S T, Pelton R, Abarca C, et al. Towards nanoparticle flotation collectors for pentlandite separation. Int J Miner Process, 2013, 123: 137 doi: 10.1016/j.minpro.2013.05.007
    [25]
    Yang S T, Pelton R, Montgomery M, et al. Nanoparticle flotation collectors III: The role of nanoparticle diameter. ACS Appl Mater Interfaces, 2012, 4(9): 4882 doi: 10.1021/am301215h
    [26]
    Yang S T, Pelton R, Raegen A, et al. Nanoparticle flotation collectors: Mechanisms behind a new technology. Langmuir, 2011, 27(17): 10438 doi: 10.1021/la2016534
    [27]
    Yang S T, Razavizadeh B B M, Pelton R, et al. Nanoparticle flotation collectors—The influence of particle softness. ACS Appl Mater Interfaces, 2013, 5(11): 4836 doi: 10.1021/am4008825
    [28]
    劉文剛, 王本英, 代淑娟, 等. 羥肟酸類捕收劑在浮選中的應用現狀及發展前景. 有色礦冶, 2006, 22(4): 25

    Liu W G, Wang B Y, Dai S J, et al. Current application and development prospect of hydroximic acid in flotation. Non Ferr Min Metall, 2006, 22(4): 25
    [29]
    徐彩麗, 池汝安, 呂仁亮, 等. 辛基羥肟酸浮選行為的研究進展. 武漢工程大學學報, 2019, 41(6): 566

    Xu C L, Chi R, Lü R L, et al. Progress in flotation behavior of octyl hydroxamic acid. J Wuhan Inst Technol, 2019, 41(6): 566
    [30]
    Wu X Q, Zhu J G. Selective flotation of cassiterite with benzohydroxamic acid. Miner Eng, 2006, 19(14): 1410 doi: 10.1016/j.mineng.2006.02.003
    [31]
    Sreenivas T, Padmanabhan N P H. Surface chemistry and flotation of cassiterite with alkyl hydroxamates. Colloids Surf A, 2002, 205(1-2): 47 doi: 10.1016/S0927-7757(01)01146-3
    [32]
    Liu M X, Li H, Jiang T, et al. Flotation of coarse and fine pyrochlore using octyl hydroxamic acid and sodium oleate. Miner Eng, 2019, 132: 191 doi: 10.1016/j.mineng.2018.12.014
    [33]
    王維維, 李二斗, 王其偉, 等. 白云鄂博微細粒稀土礦工藝礦物學及浮選實驗研究. 礦產綜合利用, 2021(5): 81

    Wang W W, Li E D, Wang Q W, et al. Study on process mineralogy and flotation test of the Bayan obo fine-grained rare earth ore. Multipurp Util Miner Resour, 2021(5): 81
    [34]
    張超凡, 余青瑤, 曹亦俊, 等. 鈦鐵礦浮選藥劑及其表面改性的研究進展. 中國有色金屬學報, 2021, 31(12): 3675

    Zhang C F, Yu Q Y, Cao Y J, et al. Research progress of ilmenite flotation reagents and their surface modification methods. Chin J Nonferrous Met, 2021, 31(12): 3675
    [35]
    Tan X, He F Y, Shang Y B, et al. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans Nonferrous Met Soc China, 2016, 26(9): 2469 doi: 10.1016/S1003-6326(16)64368-6
    [36]
    鄭其方, 劉殿文, 李佳磊, 等. 錫石浮選捕收劑機理研究進展. 中國有色金屬學報, 2021, 31(3): 785

    Zheng Q F, Liu D W, Li J L, et al. A review on mechanism of flotation collector for cassiterite. Chin J Nonferrous Met, 2021, 31(3): 785
    [37]
    胡文英, 余新陽. 微細粒黑鎢礦浮選研究現狀. 有色金屬科學與工程, 2013, 4(5): 102

    Hu W Y, Yu X Y. Research status of ultrafine wolframite flotation. Nonferrous Met Sci Eng, 2013, 4(5): 102
    [38]
    張月. 幾種新型脂肪酸類捕收劑改性藥劑介紹. 鹽湖研究, 2007, 15(2): 34

    Zhang Y. Introduction of new floatation collectors modified with fatty acid. J Salt Lake Res, 2007, 15(2): 34
    [39]
    朱陽戈. 微細粒鈦鐵礦浮選理論與技術研究[學位論文]. 長沙: 中南大學, 2012

    Zhu Y G. Research on Theory and Technology of Micro-Fine Ilmenite Flotation [Dissertation]. Changsha: Central South University, 2012
    [40]
    朱陽戈, 張國范, 馮其明, 等. 微細粒鈦鐵礦的自載體浮選. 中國有色金屬學報. 2009, 1903: 554

    Zhu G Y, Zhang G F, Feng Q M, et al. Autogenous-carrier flotation of fine ilmenite. Chin J Nonferrous Met, 2009, 1903: 554
    [41]
    李二壘, 聶巧巧, 苗美云, 等. 新型陰離子捕收劑DMY-1對細粒錫石的捕收性能. 金屬礦山, 2016(5): 61

    Li E L, Nie Q Q, Miao M Y, et al. Research on collecting property of fine cassiterite by a new anion collector DMY-1. Met Mine, 2016(5): 61
    [42]
    劉杰, 韓躍新, 朱一民, 等. 細粒錫石選礦技術研究進展及展望. 金屬礦山, 2014(10): 76

    Liu J, Han Y X, Zhu Y M, et al. Research status and prospective on separation technology of fine cassiterite. Met Mine, 2014(10): 76
    [43]
    朱建光, 孫巧根. 芐基胂酸對錫石的捕收性能. 有色金屬, 1980(3): 36

    Zhu J G, Sun Q G. Benzyl arsonic acid (α-toluene arsonic acid) as collector in the flotation of cassiterite. Nonferrous Met, 1980(3): 36
    [44]
    王雅靜, 張宗華. 微細粒金紅石浮選捕收劑的研究. 礦業快報, 2008, 24(1): 31

    Wang Y J, Zhang Z H. Study on flotation collectors for fine rutile. Express Inf Min Ind, 2008, 24(1): 31
    [45]
    周賀鵬. 微細粒鋰輝石聚團浮選特性及礦物表面反應機理[學位論文]. 徐州: 中國礦業大學, 2020

    Zhou H P. Agglomeration Flotation Characteristics of Micro-Fine Spodumene and the Reaction Mechanism on Mineral’s Surface [Dissertation]. Xuzhou: China University of Mining and Technology, 2020
    [46]
    楊帆. 季銨捕收劑在白鎢礦浮選中的應用及其作用機理研究[學位論文]. 長沙: 中南大學, 2013

    Yang F. Application of Quaternary Ammonium Salts as Collector in Flotation of Scheelite and Research of the Reaction Mechanism [Dissertation]. Changsha: Central South University, 2013
    [47]
    Deng L Q, Zhao G, Zhong H, et al. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J Ind Eng Chem, 2016, 33: 131 doi: 10.1016/j.jiec.2015.09.027
    [48]
    榮洋, 盧宇熙, 王帥, 等. N-酰基苯胲的合成及其對孔雀石浮選性能. 礦產保護與利用, 2019, 39(4): 109

    Rong Y, Lu Y X, Wang S, et al. Synthesis of the N-acyl phenyl hydroxylamines and their flotation properties on malachite. Conserv Util Miner Resour, 2019, 39(4): 109
    [49]
    Govender Y, Gericke M. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner Eng, 2011, 24(11): 1122 doi: 10.1016/j.mineng.2011.02.016
    [50]
    Gonzales L G V, Pino G A H, Torem M L. Electroflotation of cassiterite fines using a hydrophobic bacterium strain. Rem: Rev Esc Minas, 2013, 66(4): 507 doi: 10.1590/S0370-44672013000400016
    [51]
    呂宏芝. 某鉛鋅礦適宜選鋅捕收劑的試驗研究. 采礦技術. 2011, 1102: 94

    Lu H Z. Experimental study on suitable collector for zinc concentration in a lead-zinc mine. Min Technol, 2011, 11(2): 94
    [52]
    張瀚, 魏宗武, 楊梅金, 等. 新疆某含砷高硫微細粒銻礦浮選試驗研究. 現代礦業, 2019, 35(8): 93

    Zhang H, Wei Z W, Yang M J, et al. Flotation experiment on an arsenic-bearing high sulfur microfine antimony ore from Xinjiang. Mod Min, 2019, 35(8): 93
    [53]
    羅力, 李茂林, 成嵐. 廣東某鉛鋅礦泥浮選試驗研究. 有色金屬(選礦部分), 2016(3): 23

    Luo L, Li M L, Cheng L. Flotation experimental research on a lead-zinc slime in Guangdong Province. Nonferrous Met (Miner Process Sect), 2016(3): 23
    [54]
    艾光華, 吳燕玲, 周源, 等. 組合捕收劑從含鈣礦物浮選體系中回收微細粒白鎢礦. 有色金屬工程, 2014, 4(6): 44

    Ai G H, Wu Y L, Zhou Y, et al. Recovery of fine scheelite from flotation system of calcium-containing minerals with combined collectors. Nonferrous Met Eng, 2014, 4(6): 44
    [55]
    張立征, 王彩霞, 趙福財. 甘肅某微細粒浸染型難處理金礦選礦試驗研究. 礦冶工程, 2011, 31(4): 45

    Zhang L Z, Wang C X, Zhao F C. Mineral processing experiments on fine-disseminated refractory gold ore from Gansu. Min Metall Eng, 2011, 31(4): 45
    [56]
    Wang J J, Gao Z Y, Gao Y S, et al. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner Eng, 2016, 98: 261 doi: 10.1016/j.mineng.2016.09.006
    [57]
    Xu L H, Hu Y H, Tian J A, et al. Synergistic effect of mixed cationic/anionic collectors on flotation and adsorption of muscovite. Colloids Surf A, 2016, 492: 181 doi: 10.1016/j.colsurfa.2015.11.003
    [58]
    蔡振波. 陽離子捕收劑用于鐵礦石反浮選提鐵降硅的研究[學位論文]. 贛州: 江西理工大學, 2010

    Cai Z B. Application of Cationic Collector in Iron Ore Reverse Flotation to Increase Iron and Reduce Silicon [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2010
    [59]
    朱鵬程. 胺系列捕收劑的合成及組合使用研究[學位論文]. 武漢: 武漢理工大學, 2009

    Zhu P C. Synthesis of Cationic Collector Polyamines and Its Application of Combinated Collector [Dissertation]. Wuhan: Wuhan University of Technology, 2009
    [60]
    張艷嬌, 趙平, 郭珍旭, 等. 極性捕收劑在難選輝鉬礦浮選中的應用. 中國礦業, 2015, 24(11): 122

    Zhang Y J, Zhao P, Guo Z X, et al. Application of polar collectors on refractory molybdenite ore floatation. China Min Mag, 2015, 24(11): 122
    [61]
    Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004
    [62]
    李吉云, 陳慧杰, 袁艷, 等. 新疆某微細粒銅礦石選礦試驗研究. 金屬礦山, 2012(7): 82

    Li J Y, Chen H J, Yuan Y, et al. Experimental research on mineral processing for some micro-fine copper ore from Xinjiang. Met Mine, 2012(7): 82
    [63]
    高欽, 葛英勇, 劉順兵, 等. 銅鉛鋅多金屬混合精礦浮選分離試驗研究. 礦冶工程, 2020, 40(3): 72 doi: 10.3969/j.issn.0253-6099.2020.03.019

    Gao Q, Ge Y Y, Liu S B, et al. Flotation separation of copper-lead-zinc polymetallic bulk concentrate. Min Metall Eng, 2020, 40(3): 72 doi: 10.3969/j.issn.0253-6099.2020.03.019
    [64]
    He T S, Li H, Jin J P, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon. Results Phys, 2019, 12: 1050 doi: 10.1016/j.rinp.2018.12.010
    [65]
    Wang L, Sun W, Hu Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite - Quartz flotation system. Miner Eng, 2014, 64: 44 doi: 10.1016/j.mineng.2014.03.021
    [66]
    王林林, 朱靈燕, 劉躍龍, 等. 混合捕收劑在鋰云母表面吸附行為的分子動力學模擬研究. 有色金屬(選礦部分), 2019(2): 108 doi: 10.3969/j.issn.1671-9492.2019.02.022

    Wang L L, Zhu L Y, Liu Y L, et al. Molecular dynamics simulation study on adsorption behavior of mixed collector on lithium mica surface. Nonferrous Met (Miner Process Sect), 2019(2): 108 doi: 10.3969/j.issn.1671-9492.2019.02.022
    [67]
    Qu X Y, Xiao J J, Liu G Y, et al. Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to chalcopyrite. Miner Eng, 2016, 89: 10 doi: 10.1016/j.mineng.2015.12.015
    [68]
    Huang Y G, Liu G Y, Ma L Q, et al. 5-Heptyl-1, 3, 4-oxadiazole-2-thione: Synthesis and flotation mechanism to chalcopyrite. J Ind Eng Chem, 2018, 61: 331 doi: 10.1016/j.jiec.2017.12.031
    [69]
    Meng Q Y, Feng Q M, Ou L M. Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid. J Cent South Univ, 2016, 23(6): 1339 doi: 10.1007/s11771-016-3185-y
    [70]
    魏鵬剛, 任瀏祎, 曾維能, 等. 細粒黑鎢礦捕收劑的選擇及作用機理研究. 礦冶工程, 2020, 40(6): 47 doi: 10.3969/j.issn.0253-6099.2020.06.012

    Wei P G, Ren L Y, Zeng W N, et al. Mechanism for selectivity and reaction of hydroxamic acid type collector in fine-grained wolframite flotation. Min Metall Eng, 2020, 40(6): 47 doi: 10.3969/j.issn.0253-6099.2020.06.012
    [71]
    陳攀, 孫偉, 岳彤. 季鹽在高嶺石(001)面上的吸附動力學模擬. 中國礦業大學學報, 2014, 43(2): 294 doi: 10.13247/j.cnki.jcumt.2014.02.019

    Chen P, Sun W, Yue T. Dynamics simulation of tributyltetradecylphosphonium chloride on kaolinite(001)plane. J China Univ Min Technol, 2014, 43(2): 294 doi: 10.13247/j.cnki.jcumt.2014.02.019
    [72]
    Xiao J J, Liu G Y, Zhong H. The adsorption mechanism of N-butoxypropyl-S-[2-(hydroxyimino) propyl]dithiocarbamate ester to copper minerals flotation. Int J Miner Process, 2017, 166: 53 doi: 10.1016/j.minpro.2017.07.003
    [73]
    Li F X, Zhong H, Zhao G, et al. Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation. Colloids Surf A, 2016, 490: 67 doi: 10.1016/j.colsurfa.2015.11.015
    [74]
    宮貴臣, 韓躍新, 劉杰, 等. 油酸鈉在錫石(211)表面吸附的量子化學研究. 東北大學學報(自然科學版), 2018, 39(5): 684

    Gong G C, Han Y X, Liu J, et al. Quantum chemical study of the adsorption of NaOL on cassiterite(211) surface. J Northeast Univ (Nat Sci), 2018, 39(5): 684
    [75]
    Li F X, Zhong H, Zhao G, et al. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Appl Surf Sci, 2015, 353: 856 doi: 10.1016/j.apsusc.2015.06.147
    [76]
    孫文娟, 韓海生, 胡岳華, 等. 金屬離子配位調控分子組裝浮選理論及其研究進展. 中國有色金屬學報, 2020, 30(4): 927

    Sun W J, Han H S, Hu Y H, et al. Flotation theory and research progress of metal ion coordination regulation molecule assembly. Chin J Nonferrous Met, 2020, 30(4): 927
    [77]
    Zheng Y, Cui Y T, Wang W Q. Activation mechanism of lead ions in perovskite flotation with octyl hydroxamic acid collector. Minerals, 2018, 8(8): 341 doi: 10.3390/min8080341
    [78]
    Fang S, Xu L H, Wu H Q, et al. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol, 2019, 345: 35 doi: 10.1016/j.powtec.2018.12.089
    [79]
    Fang S, Xu L H, Wu H Q, et al. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner Eng, 2018, 126: 16 doi: 10.1016/j.mineng.2018.06.022
    [80]
    Tian M J, Gao Z Y, Khoso S A, et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Miner Eng, 2019, 143: 106006
    [81]
    Tian M, Zhang C, Han H, et al. Effects of the preassembly of benzohydroxamic acid with Fe (III) ions on its adsorption on cassiterite surface. Mine Eng, 2018, 127: 32 doi: 10.1016/j.mineng.2018.07.019
    [82]
    孫偉, 王若林, 胡岳華, 等. 礦物浮選過程中鉛離子的活化作用及新理論. 有色金屬(選礦部分), 2018(2): 91

    Sun W, Wang R L, Hu Y H, et al. Activation and new theory of lead ion in minerals flotation process. Nonferrous Met (Miner Process Sect), 2018(2): 91
    [83]
    Shen L, Zhu J B, Liu L Y, et al. Flotation of fine kaolinite using dodecylamine chloride/fatty acids mixture as collector. Powder Technol, 2017, 312: 159 doi: 10.1016/j.powtec.2017.02.032
    [84]
    Qin W Q, Ren L Y, Xu Y B, et al. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system. J Cent South Univ Technol, 2012, 19(6): 1711 doi: 10.1007/s11771-012-1197-9
    [85]
    Wang L, Hu Y H, Sun W, et al. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Appl Surf Sci, 2015, 327: 364 doi: 10.1016/j.apsusc.2014.11.160
    [86]
    盧毅屏, 譚燕葵, 馮其明, 等. 8-羥基喹啉在微細粒鋁硅礦物浮選分離中的作用. 中國有色金屬學報, 2007, 17(8): 1353

    Lu Y P, Tan Y K, Feng Q M, et al. Effect of 8-hydroxyquinoline on flotation separation of ultrafine aluminum-silicate minerals. Chin J Nonferrous Met, 2007, 17(8): 1353
    [87]
    張祥峰, 孫偉. 陰陽離子混合捕收劑對異極礦的浮選作用及機理. 中國有色金屬學報, 2014, 24(2): 499 doi: 10.1016/S1003-6326(14)63088-0

    Zhang X F, Sun W. Flotation behaviour and mechanism of hemimorphite in presence of mixed(cationic/anionic) collectors. Chin J Nonferrous Met, 2014, 24(2): 499 doi: 10.1016/S1003-6326(14)63088-0
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164