Citation: | MA Yunfei, LI Qing, ZHANG Jianliang, LIU Zhengjian, GUO Feng, WANG Yaozu. Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.08.30.004 |
[1] |
王新東, 上官方欽, 邢奕, 等. “雙碳”目標下鋼鐵企業低碳發展的技術路徑. 工程科學學報, 2023, 45(5):853
Wang X D, Shangguan F Q, Xing Y, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target. Chin J Eng, 2023, 45(5): 853
|
[2] |
張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630
Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630
|
[3] |
Cheng Z L, Wang J Y, Wei S S, et al. Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Appl Energy, 2017, 207: 230 doi: 10.1016/j.apenergy.2017.06.024
|
[4] |
李新創, 劉建輝, 范鐵軍, 等. 鋼鐵企業節能低碳指標體系建立及應用. 北京, 冶金工業規劃研究院, 2018
Li X C, Liu J H, Fan T J, et al. Establishment and Application of Energy-Saving and Low-Carbon Index System For Iron and Steel Enterprises. Beijing, Institute of Metallurgical Industry Planning, 2018
|
[5] |
孟建忠, 黨榮富. 燒結熱平衡與節能降耗. 燒結球團, 1998(1):18
Meng J Z, Dang R F. Sintering thermo-balance and energy saving. Sinter Pelletizing, 1998(1): 18
|
[6] |
Manojlovi? V, Kamberovi? ?, Kora? M, et al. Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Appl Energy, 2022, 307: 118209 doi: 10.1016/j.apenergy.2021.118209
|
[7] |
Liu C X, Xie Z H, Sun F R, et al. Optimization for sintering proportioning based on energy value. Appl Therm Eng, 2016, 103: 1087 doi: 10.1016/j.applthermaleng.2016.04.158
|
[8] |
Wu M, Ma J J, Hu J, et al. Optimization of coke ratio for the second proportioning phase in a sintering process base on a model of temperature field of material layer. Neurocomputing, 2018, 275: 10 doi: 10.1016/j.neucom.2017.05.003
|
[9] |
馬俊杰, 吳敏, 李勇. 燒結配料過程焦粉最低配比計算方法. 化工學報, 2012, 63(9):2688 doi: 10.3969/j.issn.0438-1157.2012.09.003
Ma J J, Wu M, Li Y. Minimal coke consumption calculating method. CIESC J, 2012, 63(9): 2688 doi: 10.3969/j.issn.0438-1157.2012.09.003
|
[10] |
潘禹竹. 基于燒結基礎特性的鐵礦粉燒結優化配礦研究[學位論文]. 沈陽:東北大學, 2020
Pan Y Z. Research on Optimization of Iron ore Blending Based on Basic Sintering Characteristics [Dissertation]. Shenyang: Northeastern University, 2020
|
[11] |
張國成, 羅果萍, 柴軼凡, 等. 褐鐵礦在燒結工藝中的優化配置. 工程科學學報, 2022, 44(1):39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004
Zhang G C, Luo G P, Chai Y F, et al. Optimal allocation of limonite in sintering process. Chin J Eng, 2022, 44(1): 39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004
|
[12] |
陳健, 楊春節, 胡兵, 等. 基于XGBoost和反向自適應粒子群的燒結配料智能優化方法. 冶金自動化, 2023, 47(3):71
Chen J, Yang C J, Hu B, et al. Optimization of sinter batching based on intelligent method of XGBoost and reverse adaptive population particle swarm optimization. Metall Ind Autom, 2023, 47(3): 71
|
[13] |
翁思浩, 包向軍, 陳光, 等. 基于人工智能的燒結配礦系統研究現狀//第十一屆全國能源與熱工學術年會. 馬鞍山, 2021:297
Weng S H, Bao X J, Chen G, et al. Research status of sintering distribution system based on artificial intelligence // The 11th Annual National Energy and Thermal Engineering Conference. Ma'anshan, 2021: 297
|
[14] |
孫俊波, 楊明, 韓子文. 鞍鋼鲅魚圈燒結低成本配礦生產實踐. 鞍鋼技術, 2015(3):36 doi: 10.3969/j.issn.1006-4613.2015.03.009
Sun J B, Yang M, Han Z W. Production practice of ore blending by low cost sintering in Bayuquan branch of angang. Angang Technol, 2015(3): 36 doi: 10.3969/j.issn.1006-4613.2015.03.009
|
[15] |
武曉婧. 燒結配礦優化模型及燒結礦質量預測研究[學位論文]. 石家莊:河北經貿大學, 2020
Wu X J. The Research on Sintering Ore Optimization Model and Sinter Quality Prediction [Dissertation]. Shijiazhuang: Hebei University of Economics and Business, 2020
|
[16] |
劉含宇. 基于. NET的鐵礦選配系統設計與實現[學位論文]. 馬鞍山:安徽工業大學, 2019
Liu H Y. Design and Implementation of Iron Ore Matching System Based on . NET [Dissertation]. Ma’anshan: Anhui Universit of Technology, 2019
|
[17] |
李勇, 吳敏, 曹衛華, 等. 基于線性規劃和遺傳–粒子群算法的燒結配料多目標綜合優化方法. 控制理論與應用, 2011, 28(12):1740
Li Y, Wu M, Cao W H, et al. A multi-objective optimization algorithm for sintering proportion based on linear programming and genetic algorithm particle swam optimization. Contr Theory Appl, 2011, 28(12): 1740
|
[18] |
Shen X, Chen L G, Xia S J, et al. Iron ores matching analysis and optimization for iron-making system by taking energy consumption, CO2 emission or cost minimization as the objective. Sci China Technol Sci, 2017, 60(11): 1625 doi: 10.1007/s11431-017-9072-9
|
[19] |
馮茜, 李擎, 王耀祖, 等. 約束多目標粒子群算法在燒結配礦優化中的應用. 控制理論與應用, 2022, 39(5):923
Feng Q, Li Q, Wang Y Z, et al. Application of constrained multi-objective particle swarm optimization to sinter proportioning optimization. Contr Theory Appl, 2022, 39(5): 923
|
[20] |
Li K J, Zhang J L, Liu Z J, et al. Optimization model coupling both chemical compositions and high-temperature characteristics of sintering materials for sintering burden. Int J Miner Metall Mater, 2014, 21(3): 216 doi: 10.1007/s12613-014-0888-7
|
[21] |
Wang J K, Qiao F, Zhao F, et al. A data-driven model for energy consumption in the sintering process. J Manuf Sci Eng, 2016, 138(10): 101001 doi: 10.1115/1.4033661
|
[22] |
Yang S P, Liu H J, Sun H X, et al. Study on influencing factors of high-temperature basic characteristics of iron ore powder and optimization of ore blending. Materials, 2022, 15(9): 3329 doi: 10.3390/ma15093329
|
[23] |
許斌. 鐵礦石均熱燒結基礎與技術研究[學位論文]. 長沙:中南大學, 2012
Xu B. Research on Fundamental and Technology of Heat-Homogenizing Sintering of Iron Ores [Dissertation]. Changsha: Central South University, 2012
|
[24] |
王海東, 余海釗, 范曉慧, 等. 鐵礦燒結過程能耗數學模型的研究進展. 鋼鐵, 2018, 53(10):1
Wang H D, Yu H Z, Fan X H, et al. Progress in research on mathematical model of energy consumption of iron ore sintering process. Iron Steel, 2018, 53(10): 1
|
[25] |
Mitterlehner J, Loeffler G, Winter F, et al. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ Int, 2004, 44(1): 11 doi: 10.2355/isijinternational.44.11
|
[26] |
伍鐵斌, 朱紅求, 龍文, 等. 改進的鯨魚優化算法及其在燒結配料中的應用. 中南大學學報(自然科學版), 2020, 51(1):103
Wu T B, Zhu H Q, Long W, et al. Improved whale optimization algorithm and its application in sintering blending process. J Cent South Univ (Sci Technol), 2020, 51(1): 103
|
[27] |
楊雙平, 孫海興, 張甜甜, 等. 低硅礦燒結高溫基礎特性及優化配礦研究. 鋼鐵研究學報, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246
Yang S P, Sun H X, Zhang T T, et al. Study on high-temperature basic characteristics of low-silica ore sintering and optimal ore allocation. J Iron Steel Res, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246
|
[28] |
Gao Q J, Wang H, Pan X Y, et al. A forecast model of the sinter tumble strength in iron ore fines sintering process. Powder Technol, 2021, 390: 256 doi: 10.1016/j.powtec.2021.05.063
|
[29] |
Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm // 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Orlando, 2002: 4104
|
[30] |
Mirjalili S. Evolutionary Algorithms and Neural Networks. Germany: Springer, 2019
|
[31] |
Bertsimas D, Tsitsiklis J. Simulated annealing. Statist Sci, 1993, 8(1): 10
|
[32] |
Mardani A, Zavadskas E K, Govindan K, et al. VIKOR technique: A systematic review of the state of the art literature on methodologies and applications. Sustainability, 2016, 8(1): 37 doi: 10.3390/su8010037
|
[33] |
Li Z P, Fan X H, Chen G, et al. Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation. Neural Comput & Applic, 2017, 28(8): 2247
|
[34] |
Sahu A K, Mahapatra S S, Chatterjee S. Optimization of electro-discharge coating process using harmony search. Mater Today, 2018, 5(5): 12673 doi: 10.1016/j.matpr.2018.02.251
|