Citation: | JIANG Na, SUN Luo-ran, WANG Hui-li, WU Zhong-han, JIAO Pei-xin, ZHANG Kai. Recent advances in P2-type Ni–Mn-based layered oxide cathodes for sodium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1071-1085. doi: 10.13374/j.issn2095-9389.2022.08.22.003 |
[1] |
Liu Y K, Li J, Shen Q Y, et al. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience, 2022, 2(1): 10 doi: 10.1016/j.esci.2021.12.008
|
[2] |
Hou Y N, Li X F, Liu W, et al. ALD derived Fe3+- doping toward high performance P2-Na0.75Ni0. 2Co0. 2Mn0. 6O2 cathode material for sodium ion batteries. Mater Today Energy, 2019, 14: 100353 doi: 10.1016/j.mtener.2019.100353
|
[3] |
Liu Z J, Zheng F F, Xiong W W, et al. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, 2021, 2(4): 488 doi: 10.1002/smm2.1064
|
[4] |
Niu Y B, Yin Y X, Wang W P, et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem, 2020, 2(1): 589 doi: 10.31635/ccschem.019.201900055
|
[5] |
Xu L, Li H, Du T, et al. An all Prussian blue analog-based aprotic sodium-ion battery. Battery Energy, 2022, 1(2): 20210003 doi: 10.1002/bte2.20210003
|
[6] |
Chu S Y, Guo S H, Zhou H S. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem Soc Rev, 2021, 50(23): 13189 doi: 10.1039/D1CS00442E
|
[7] |
Zuo W H, Qiu J M, Liu X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun, 2020, 11(1): 3544 doi: 10.1038/s41467-020-17290-6
|
[8] |
Wang W H, Zhang J L, Li C L, et al. P2-Na2/3Ni2/3Te1/3O2 cathode for Na-ion batteries with high voltage and excellent stability. Energy & Environ Materials, https://doi.org/10.1002/eem2.12314
|
[9] |
Zuo W H, Ren F C, Li Q H, et al. Insights of the anionic redox in P2-Na0.67Ni0. 33Mn0. 67O2. Nano Energy, 2020, 78: 105285 doi: 10.1016/j.nanoen.2020.105285
|
[10] |
Paulsen J M, Dahn J R. O2-type Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries II. structure,composition,and properties. J Electrochem Soc, 2000, 147(7): 2478
|
[11] |
Paulsen J M, Thomas C L, Dahn J R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries. I. Electrochemical properties. J Electrochem Soc, 2000, 147(3): 861 doi: 10.1149/1.1393283
|
[12] |
Liu Q N, Hu Z, Chen M Z, et al. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J Mater Chem A, 2019, 7(15): 9215 doi: 10.1039/C8TA11927A
|
[13] |
Wu X H, Xu G L, Zhong G M, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces, 2016, 8(34): 22227 doi: 10.1021/acsami.6b06701
|
[14] |
Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc, 2006, 128(26): 8694 doi: 10.1021/ja062027+
|
[15] |
Maitra U, House R A, Somerville J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat Chem, 2018, 10(3): 288 doi: 10.1038/nchem.2923
|
[16] |
Zuo W H, Qiu J M, Liu X S, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Mater, 2020, 26: 503 doi: 10.1016/j.ensm.2019.11.024
|
[17] |
Dai K H, Mao J, Zhuo Z Q, et al. Negligible voltage hysteresis with strong anionic redox in conventional battery electrode. Nano Energy, 2020, 74: 104831 doi: 10.1016/j.nanoen.2020.104831
|
[18] |
Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv Energy Mater, 2018, 8(17): 1703415 doi: 10.1002/aenm.201703415
|
[19] |
Lu Z H, Dahn J R. In situ X-Ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc, 2001, 148(11): A1225 doi: 10.1149/1.1407247
|
[20] |
Wang K, Yan P F, Sui M L. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy, 2018, 54: 148 doi: 10.1016/j.nanoen.2018.09.073
|
[21] |
Lee D H, Xu J, Meng Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys, 2013, 15(9): 3304 doi: 10.1039/c2cp44467d
|
[22] |
Wang P F, Yao H R, Liu X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv, 2018, 4(3): eaar6018 doi: 10.1126/sciadv.aar6018
|
[23] |
Ortiz-Vitoriano N, Drewett N E, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ Sci, 2017, 10(5): 1051 doi: 10.1039/C7EE00566K
|
[24] |
Gutierrez A, Dose W M, Borkiewicz O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J Phys Chem C, 2018, 122(41): 23251 doi: 10.1021/acs.jpcc.8b05537
|
[25] |
Wang C C, Liu L J, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun, 2021, 12(1): 2256 doi: 10.1038/s41467-021-22523-3
|
[26] |
Liu X S, Zuo W H, Zheng B Z, et al. P2-Na0.67Alx Mn1–xO2:Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility. Angew Chem Int Ed, 2019, 58(50): 18086 doi: 10.1002/anie.201911698
|
[27] |
Wang P F, You Y, Yin Y X, et al. Suppressing the P2–O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed Engl, 2016, 55(26): 7445 doi: 10.1002/anie.201602202
|
[28] |
Wang K, Wan H, Yan P F, et al. Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries. Adv Mater, 2019, 31(46): e1904816 doi: 10.1002/adma.201904816
|
[29] |
Wang Q C, Meng J K, Yue X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc, 2019, 141(2): 840 doi: 10.1021/jacs.8b08638
|
[30] |
Peng B, Sun Z H, Zhao L P, et al. Dual-manipulation on P2-Na0.67Ni0. 33Mn0. 67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3. 5 V. Energy Storage Mater, 2021, 35: 620 doi: 10.1016/j.ensm.2020.11.037
|
[31] |
Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3–xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun, 2014, 50(28): 3677 doi: 10.1039/C3CC49856E
|
[32] |
Zhang J L, Wang W H, Wang W, et al. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces, 2019, 11(25): 22051 doi: 10.1021/acsami.9b03937
|
[33] |
Xu J, Lee D H, Clément R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0<x, y, z<1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater, 2014, 26(2): 1260 doi: 10.1021/cm403855t
|
[34] |
Yang L T, Kuo L Y, López del Amo J M, et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Adv Funct Mater, 2021, 31(38): 2102939 doi: 10.1002/adfm.202102939
|
[35] |
Hasa I, Passerini S, Hassoun J. Toward high energy density cathode materials for sodium-ion batteries: Investigating the beneficial effect of aluminum doping on the P2-type structure. J Mater Chem A, 2017, 5(9): 4467 doi: 10.1039/C6TA08667E
|
[36] |
Yang L, Luo S H, Wang Y F, et al. Cu-doped layered P2-type Na0.67Ni0.33–xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem Eng J, 2021, 404: 126578 doi: 10.1016/j.cej.2020.126578
|
[37] |
Zheng L T, Li J R, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells. Chem Mater, 2017, 29(4): 1623 doi: 10.1021/acs.chemmater.6b04769
|
[38] |
Wang L, Sun Y G, Hu L L, et al. Copper-substituted Na0.67Ni0.3?xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A, 2017, 5(18): 8752 doi: 10.1039/C7TA00880E
|
[39] |
Li Z Y, Zhang J C, Gao R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3–xCoxO2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces, 2016, 8(24): 15439 doi: 10.1021/acsami.6b04073
|
[40] |
Liu Z B, Shen J D, Feng S H, et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na. Angew Chem Int Ed, 2021, 60(38): 20960 doi: 10.1002/anie.202108109
|
[41] |
Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv Energy Mater, 2019, 9(19): 1803978 doi: 10.1002/aenm.201803978
|
[42] |
Peng B, Chen Y X, Wang F, et al. Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv Mater, 2022, 34(6): e2103210 doi: 10.1002/adma.202103210
|
[43] |
Jin J T, Liu Y C, Shen Q Y, et al. Unveiling the complementary manganese and oxygen redox chemistry for stabilizing the sodium-ion storage behaviors of layered oxide cathodes. Adv Funct Mater, 2022, 32(29): 2203424 doi: 10.1002/adfm.202203424
|
[44] |
Fu F, Liu X, Fu X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat Commun, 2022, 13: 2826 doi: 10.1038/s41467-022-30113-0
|
[45] |
Cheng Z W, Zhao B, Guo Y J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater, 2022, 12(14): 2103461 doi: 10.1002/aenm.202103461
|
[46] |
Shen Q Y, Liu Y C, Zhao X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv Funct Mater, 2021, 31(51): 2106923 doi: 10.1002/adfm.202106923
|
[47] |
Mu L Q, Rahman M M, Zhang Y, et al. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries. J Mater Chem A, 2018, 6(6): 2758 doi: 10.1039/C7TA08410B
|
[48] |
Dang R B, Li Q, Chen M M, et al. CuO-Coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys Chem Chem Phys, 2019, 21(1): 314 doi: 10.1039/C8CP06248J
|
[49] |
Jo J H, Choi J U, Konarov A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv Funct Mater, 2018, 28(14): 1705968 doi: 10.1002/adfm.201705968
|
[50] |
Xu K, Yan M M, Chang Y X, et al. Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage. Electrochimica Acta, 2022, 419: 140394 doi: 10.1016/j.electacta.2022.140394
|
[51] |
Xue L, Bao S, Yan L, et al. MgO-coated layered cathode oxide with enhanced stability for sodium-ion batteries. Front Energy Res, 2022, 10: 847818 doi: 10.3389/fenrg.2022.847818
|
[52] |
Zhang F P, Liao J H, Xu L, et al. Stabilizing P2-type Ni–Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries. ACS Appl Mater Interfaces, 2021, 13(34): 40695 doi: 10.1021/acsami.1c12062
|
[53] |
Cheng Z W, Fan X Y, Yu L Z, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew Chem Int Ed, 2022, 61(19): e202117728
|
[54] |
Gao X, Liu H Q, Chen H Y, et al. Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Sci Bull, 2022, 67(15): 1589 doi: 10.1016/j.scib.2022.06.024
|