Citation: | XIN Tongze, WANG Min, BAO Yanping. Research progress of converter splash mechanism and prediction model technology[J]. Chinese Journal of Engineering, 2023, 45(10): 1716-1728. doi: 10.13374/j.issn2095-9389.2022.08.18.002 |
[1] |
鄭杰. 萊鋼90 t轉爐噴濺原因分析與對策. 山東冶金, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005
Zheng J. Analyses of the slopping cause of 90 t converter in Laiwu steel and the countermeasures. Shandong Metall, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005
|
[2] |
胡國新. 轉爐吹煉噴濺的預測和預防探討. 武漢工程職業技術學院學報, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005
Hu G X. Inquiry into prediction and prevention of splash in steel making. J Wuhan Eng Inst, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005
|
[3] |
胡文華, 孫前進. 中小轉爐噴濺的預防與控制//2008年全國煉鋼——連鑄生產技術會議. 杭州, 2008: 206
Hu W H, Sun Q J. Prevention and control of splashing in medium and small converter // 2008 National Steel Making Continuous Casting Production Technology Conference. Hangzhou, 2008: 206
|
[4] |
興超, 姚娜, 張利武. 泡沫渣抑制劑在60 t轉爐煉鋼生產中的應用. 特殊鋼, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013
Xing C, Yao N, Zhang L W. Application of foam slag inhibitor in 60 t converter steelmaking production. Spec Steel, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013
|
[5] |
郭傳奇, 劉謙. 優化過程槍位控制減少復吹轉爐煉鋼噴濺. 中國冶金, 2015, 25(3): 45
Guo C Q, Liu Q. Optimization process oxygen lance position control to reduce the splash of the blowing BOF steelmaking. China Metall, 2015, 25(3): 45
|
[6] |
占海濤. 轉爐鋼渣噴濺傷人的分析與應對措施//2015中國金屬學會冶金安全與健康年會. 湘潭, 2015: 112
Zhan H T. Analysis and Countermeasures of steel slag splashing injury in converter // 2015 Annual Meeting of Metallurgical Safety and Health of China Metal Society. Xiangtan, 2015: 112
|
[7] |
張啟明. 轉爐噴濺的機理及控制措施. 福建冶金, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011
Zhang Q M. Converter splattering mechanism and control measure. Fujian Metall, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011
|
[8] |
王慧. 轉爐煉鋼噴濺現象的成因分析和預防措施. 科技與創新, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002
Wang H. BOF splash phenomenon causes analysis and preventive measures. Sci Technol Innov, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002
|
[9] |
孫貴平, 郭忠, 孫巧梅, 等. 宣鋼110噸轉爐噴濺產生的原因與控制//河北省2010年煉鋼—連鑄—軋鋼生產技術與學術交流會. 邯鄲, 2010: 305
Sun G P, Guo Z, Sun Q M, et al. Causes and control of splashing in 110 t converter of Xuanhua Steel // Hebei Province 2010 Steel Making Continuous Casting Rolling Production Technology and Academic Exchange Meeting. Handan, 2010: 305
|
[10] |
占海濤, 王光進, 耿恒亮, 等. 轉爐噴濺發生的原理與應對措施//中南泛珠三角煉鋼連鑄學術交流會. 武漢, 2010: 200
Zhan H T, Wang G J, Geng H L, et al. Principle and countermeasures of converter splashing // South Central Pan Pearl River Delta Steel Making and Continuous Casting Academic Exchange Meeting. Wuhan, 2010: 200
|
[11] |
Br?mming M, Engstr?m F, Samuelsson C, et al. Characterization of slag-metal emulsion and its impact on foaming behavior and slopping in the LD process. Steel Res Int, 2018, 90(2): 1800269
|
[12] |
王杰, 曾加慶, 楊利彬. 煉鋼過程中熔渣泡沫化的研究現狀. 中國冶金, 2016, 26(9): 1
Wang J, Zeng J Q, Yang L B. Research status of slag foaming behaviors during steelmaking process. China Metall, 2016, 26(9): 1
|
[13] |
Lotun D, Pilon L. Physical modeling of slag foaming for various operating conditions and slag compositions. ISIJ Int, 2005, 45(6): 835 doi: 10.2355/isijinternational.45.835
|
[14] |
程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10): 1139
Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139
|
[15] |
王三忠, 李文山, 呂亞. 轉爐煉鋼噴濺的控制及預防措施. 河南冶金, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011
Wang S Z, Li W S, Lv Y. Control and preventive measures for preventing splash in the steelmaking in angang. Henan Metall, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011
|
[16] |
Jung S M, Fruehan R J. Foaming characteristics of BOF slags. ISIJ Int, 2000, 40(4): 348 doi: 10.2355/isijinternational.40.348
|
[17] |
Kim H S, Min D J, Park J H. Foaming behavior of CaO–SiO2–FeO–MgOsatd–X (X=Al2O3, MnO, P2O5, and CaF2) slags at high temperatures. ISIJ Int, 2001, 41(4): 317
|
[18] |
郭龍鑫, 龐洪軒, 鄭冰, 等. 260 t頂底復吹轉爐噴濺特征的水模型研究和應用. 特殊鋼, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003
Guo L X, Pang H X, Zheng B, et al. Study of water model on splashing characteristics of 260 t top and bottom combined blown converter and application. Spec Steel, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003
|
[19] |
李琳, 李明明, 李強, 等. 漩流氧槍轉爐煉鋼熔體的噴濺行為. 鋼鐵, 2020, 55(6): 54
Li L, Li M M, Li Q, et al. Melt splashing behavior of steelmaking converter with nozzle-twisted lance. Iron Steel, 2020, 55(6): 54
|
[20] |
鄧麗琴, 李明明, 李強, 等. 煉鋼轉爐噴濺行為的數值模擬. 材料與冶金學報, 2016, 15(1): 25
Deng L Q, Li M M, Li Q, et al. Numerical modeling on splashing behavior of steelmaking converter. J Mater Metall, 2016, 15(1): 25
|
[21] |
Alam M, Naser J, Brooks G, et al. A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface. ISIJ Int, 2012, 52(6): 1026 doi: 10.2355/isijinternational.52.1026
|
[22] |
劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(S1): 54
Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(S1): 54
|
[23] |
宋健, 解文中, 孫波, 等. 120 t轉爐氧槍噴頭參數優化與應用. 煉鋼, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003
Song J, Xie W Z, Sun B, et al. Design and application of 120 t converter oxygen lance nozzle. Steelmaking, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003
|
[24] |
Higuchi Y, Tago Y. Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ Int, 2003, 43(9): 1410 doi: 10.2355/isijinternational.43.1410
|
[25] |
楊文遠, 張先貴, 呂英華, 等. 轉爐供氧參數對噴濺的影響. 鋼鐵, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015
Yang W Y, Zhang X G, Lü Y H, et al. Effects of oxygen supply on splashing of BOF. Iron Steel, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015
|
[26] |
馬德賓. 260 t轉爐氧槍參數優化效果研究. 冶金能源, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007
Ma D B. Optimization of oxygen lance parameters for 260 t converter. Energy Metall Ind, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007
|
[27] |
楊文遠, 馮超, 王明林, 等. 大型轉爐高供氧強度吹煉的水模實驗. 鋼鐵研究學報, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324
Yang W Y, Feng C, Wang M L, et al. Water model experiment of high supplying oxygen blowing in large converter. J Iron Steel Res, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324
|
[28] |
呂長海, 張紅軍, 鄭從杰, 等. 轉爐氧槍槍位對熔池作用規律研究. 有色金屬科學與工程, 2020, 11(1): 20
Lyu C H, Zhang H J, Zheng C J, et al. Research on the effect of lance height change of converter oxygen lance on the molten pool. Nonferrous Met Sci Eng, 2020, 11(1): 20
|
[29] |
Luomala M J, Fabritius T M J, Virtanen E O, et al. Splashing and spitting behaviour in the combined blown steelmaking converter. ISIJ Int, 2002, 42(9): 944 doi: 10.2355/isijinternational.42.944
|
[30] |
Amano S, Sato S, Takahashi Y, et al. Effect of top and bottom blowing conditions on spitting in converter. Eng Rep, 2021, 3(12): e12406
|
[31] |
Li M M, Li Q, Zou Z S, et al. Characterization of cavity oscillation and splashing distribution under excitation by bottom gas blowing in a steelmaking converter. JOM, 2018, 71(2): 729
|
[32] |
顧兆祖, 呂愛強. 轉爐前期噴濺的原因及預防措施//2015年煉鋼品種、質量提升研討會. 濟南, 2015: 81
Gu Z Z, Lv A Q. Causes and preventive measures of splashing in the early stage of converter // 2015 Steel Making Variety and Quality Improvement Seminar. Jinan, 2015: 81
|
[33] |
肖虎. 轉爐冶煉前期噴濺的控制. 冶金叢刊, 2012(3): 17
Xiao H. Early splashing control in converter steelmaking. Metall Collect, 2012(3): 17
|
[34] |
王子亮, 陳華知. 轉爐煉鋼爆炸和熔融物噴濺事故分析. 河南冶金, 1998(4): 63
Wang Z L, Chen H Z. Analysis of explosion and melt splashing accident in converter steelmaking. Henan Metall, 1998(4): 63
|
[35] |
Deo B, Overbosch A, Snoeijer B, et al. Control of slag formation, foaming, slopping, and chaos in BOF. Trans Indian Inst Met, 2013, 66(5): 543
|
[36] |
Br?mming M. An Operational View on Foaming and Slopping Control in Top-Blown BOS Vessels [Dissertation]. Lulea: Lule? Tekniska Universitet, 2015
|
[37] |
Kattenbelt C. Modeling and Optimization of Slopping Prevention and Batch Time Reduction in Basic Oxygen Steelmaking [Dissertation]. Enschede: University of Twente, 2008
|
[38] |
Evestedt M, Medvedev A, Thorén M, et al. Slopping warning system for the ld converter process - an extended evaluation study. IFAC Proc Vol, 2007, 40(11): 267 doi: 10.3182/20070821-3-CA-2919.00040
|
[39] |
Br?mming M, Bj?rkman B, Samuelsson C. BOF process control and slopping prediction based on multivariate data analysis. Steel Res Int, 2016, 87(3): 301 doi: 10.1002/srin.201500040
|
[40] |
林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7): 854
Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854
|
[41] |
萬雪峰. 基于爐氣分析的轉爐動態預測模型[學位論文]. 遼寧: 東北大學, 2006
Wan X F. Dynamic Prediction Model of Converter Based on Furnace Gas Analysis [Dissertation]. Liaoning: Northeastern University, 2006
|
[42] |
胡志剛, 劉瀏, 何平. 爐氣分析在轉爐動態控制中的應用. 鋼鐵研究學報, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016
Hu Z G, Liu L, He P. Application of gas analysis in converter dynamic control. J Iron Steel Res, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016
|
[43] |
胡志剛, 劉瀏, 何平, 等. 150 t轉爐利用爐氣分析進行噴濺預報及控制. 鋼鐵, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005
Hu Z G, Liu L, He P, et al. Slopping prediction and control on 150 t bof by off-gas analysis. Iron Steel, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005
|
[44] |
萬雪峰, 張貴玉, 林東, 等. 轉爐爐氣成分變化規律的初步研究. 中國冶金, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007
Wan X F, Zhang G Y, Lin D, et al. Variation rule of off-gas component in BOF. China Metall, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007
|
[45] |
孫承碧, 劉南, 楊小龍. 利用CO濃度曲線監控轉爐造渣工藝實踐. 包鋼科技, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012
Sun C B, Liu N, Yang X L. Practice on monitoring scorification technology of converter with CO concentration curve. Sci Technol Baotou Steel, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012
|
[46] |
張立君. 基于轉爐CO氣體分析的煉鋼噴濺控制技術. 山西冶金, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49
Zhang L J. Steel-making splash control technology based on converter CO gas analysis. Shanxi Metall, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49
|
[47] |
梁三清, 劉小剛, 陳帥, 等. 轉爐爐氣CO分析在煉鋼過程中的應用. 中國冶金, 2018, 28(12): 48
Liang S Q, Liu X G, Chen S, et al. Application of converter gas CO analysis in steelmaking process. China Metall, 2018, 28(12): 48
|
[48] |
張大勇, 張彩軍, 徐志榮. 音頻化渣技術在150 t復吹轉爐上的開發與應用. 中國冶金, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006
Zhang D Y, Zhang C J, Xu Z R. Exploitation and application of audio frequency slag melting in 150 t combined blowing converter. China Metall, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006
|
[49] |
楊尚寶, 張叔和. 轉爐造渣的聲納監控方法. 北京科技大學學報, 1995(3): 229
Yang S B, Zhang S H. Sonar monitored method for slag-making in converter. J Univ Sci Technol Beijing, 1995(3): 229
|
[50] |
蔣曉放, 劉春華, 謝良德. 寶鋼300 t轉爐音平控渣技術的開發與應用. 寶鋼技術, 2000(2): 41
Jiang X F, Liu C H, Xie L D. Development and application of the sonic slag technology for 300 t converter at baosteel. Bao Steel Technol, 2000(2): 41
|
[51] |
劉忠建. 在線控制爐渣技術實踐. 冶金叢刊, 2016(3): 46
Liu Z J. Practice of on-line control of slag technology. Metall Collect, 2016(3): 46
|
[52] |
李繼勇. 音頻化渣技術在重鋼復吹轉爐上的應用. 科學與財富, 2019(19): 197
Li J Y. Application of audio frequency slagging technology in combined blowing converter of Chongqing Iron and Steel Co. Sci Wealth, 2019(19): 197
|
[53] |
龐殊楊, 王姝洋, 賈鴻盛. 基于殘差神經網絡實現轉爐火焰狀態識別. 冶金自動化, 2021, 45(1): 34
Pang S Y, Wang S Y, Jia H S. Recognition of converter flame state based on ResNet neural network. Metall Ind Autom, 2021, 45(1): 34
|
[54] |
Ghosh B. Opto-Acoustic Slopping Prediction System in Basic Oxygen Furnace Converters [Dissertation]. Stockholm: KTH Royal Institute of Technology, 2017
|
[55] |
Batista L G, Salarolli P F, de Menezes R P, et al. Slopping detection system for LD converters using sound signal digital and image processing // 2018 13th IEEE International Conference on Industry Applications (INDUSCON). Sao Paulo, 2018: 1137
|