Citation: | QIAN Lixin, TAO Jiajie, FAN Chunlong, DING Long, LONG Hongming, YANG Tao, YU Zhengwei. Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite[J]. Chinese Journal of Engineering, 2023, 45(10): 1740-1749. doi: 10.13374/j.issn2095-9389.2022.08.07.001 |
[1] |
于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
|
[2] |
龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865
Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865
|
[3] |
邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
|
[4] |
韋晉科, 張強, 李永光. 燒結機中溫SCR脫硝催化劑失活原因分析. 河北冶金, 2021(12):75
Wei J K, Zhang Q, Li Y G. Cause analysis of deactivation of medium temperature SCR denitration catalyst in sintering machine. Hebei Metall, 2021(12): 75
|
[5] |
丁龍, 錢立新, 楊濤, 等. 燒結煙氣中Zn對V2O5-WO3/TiO2催化劑脫除NOx和二噁英性能的影響. 工程科學學報, 2021, 43(8):1125
Ding L, Qian L X, Yang T, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst. Chin J Eng, 2021, 43(8): 1125
|
[6] |
侯學軍, 章小明, 程文博, 等. 廢釩鈦基SCR催化劑的處置方法研究進展. 化工進展, 2021, 40(10):5313 doi: 10.16085/j.issn.1000-6613.2021-0568
Hou X J, Zhang X M, Cheng W B, et al. Research on disposal methods of spent vanadium-titanium-based catalysts. Chem Ind Eng Prog, 2021, 40(10): 5313 doi: 10.16085/j.issn.1000-6613.2021-0568
|
[7] |
龍紅明, 丁龍, 陶家杰, 等. 燒結煙氣脫硝廢棄釩鎢鈦催化劑資源化利用途徑分析. 鋼鐵, 2022, 57(7):162
Long H M, Ding L, Tao J J, et al. Analysis on resource utilization of waste vanadium-tungsten-titanium catalyst for denitration of sintering flue gas. Iron Steel, 2022, 57(7): 162
|
[8] |
Li M, Liu B, Wang X R, et al. A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration. Chem Eng J, 2018, 342: 1 doi: 10.1016/j.cej.2017.12.132
|
[9] |
劉興譽, 賈媛媛, 唐中華, 等. 廢舊SCR脫硝催化劑再生研究進展. 應用化工, 2020, 49(7):1839 doi: 10.3969/j.issn.1671-3206.2020.07.052
Liu X Y, Jia Y Y, Tang Z H, et al. Research progress on regeneration of waste SCR denitration catalyst. Appl Chem Ind, 2020, 49(7): 1839 doi: 10.3969/j.issn.1671-3206.2020.07.052
|
[10] |
何川, 王樂樂, 楊曉寧, 等. 廢棄選擇性催化還原催化劑混摻對新催化劑脫硝性能的影響. 化工進展, 2018, 37(2):581 doi: 10.16085/j.issn.1000-6613.2017-0873
He C, Wang L L, Yang X N, et al. Effects of spent SCR catalyst blending on the de-NOx activity of new catalyst. Chem Ind Eng Prog, 2018, 37(2): 581 doi: 10.16085/j.issn.1000-6613.2017-0873
|
[11] |
Erust C, Akcil A, Bedelova Z, et al. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests. Waste Manag, 2016, 49: 455 doi: 10.1016/j.wasman.2015.12.002
|
[12] |
Liu L J, Wang L L, Su S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent. Fuel, 2019, 243: 406 doi: 10.1016/j.fuel.2019.01.160
|
[13] |
周昊, 國旭濤, 周明熙. 不同添加劑對廢棄SCR催化劑熔融無害化處理的影響. 動力工程學報, 2017, 37(12):999 doi: 10.3969/j.issn.1674-7607.2017.12.009
Zhou H, Guo X T, Zhou M X. Influence of different additives on harmless melting treatment of waste SCR catalysts. J Chin Soc Power Eng, 2017, 37(12): 999 doi: 10.3969/j.issn.1674-7607.2017.12.009
|
[14] |
Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
|
[15] |
Qian L X, Yang T, Long H M, et al. Recycling of waste V2O5–WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach. ACS Sustainable Chem Eng, 2021, 9(48): 16373 doi: 10.1021/acssuschemeng.1c06271
|
[16] |
劉東輝, 王曉哲, 張建良, 等. 高爐護爐用含鈦物料應用現狀及調研分析. 中國冶金, 2018, 28(2):1
Liu D H, Wang X Z, Zhang J L, et al. Application status and investigation of titanium-containing materials in blast furnace protection process. China Metall, 2018, 28(2): 1
|
[17] |
Wu J L, Chen H, Sun J, et al. Metallurgical properties and furnace protection practice of different titanium-bearing burdens. Ironmak Steelmak, 2020, 47(10): 1161 doi: 10.1080/03019233.2019.1678845
|
[18] |
Sun J, Wang S, Chu M S, et al. Titanium distribution between blast furnace slag and iron for blast furnace linings protection. Ironmak Steelmak, 2020, 47(5): 545 doi: 10.1080/03019233.2018.1557847
|
[19] |
Zhao H, Bennici S, Shen J, et al. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42? catalysts. Appl Catal A Gen, 2009, 356(2): 121 doi: 10.1016/j.apcata.2008.12.037
|
[20] |
Forsmo S P E, Samskog P O, Bj?rkman B M T. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technol, 2008, 181(3): 321 doi: 10.1016/j.powtec.2007.05.023
|
[21] |
陳許玲, 黃云松, 范曉慧, 等. 釩鈦磁鐵礦球團氧化焙燒行為和固結特性. 中南大學學報(自然科學版), 2016, 47(2):359
Chen X L, Huang Y S, Fan X H, et al. Oxidation roasting behavior and concretion properties of vanadium-titanium magnetite pellet. J Central South Univ (Sci Technol), 2016, 47(2): 359
|
[22] |
Gan M, Sun Y F, Fan X H, et al. Preparing high-quality vanadium titano-magnetite pellets for large-scale blast furnaces as ironmaking burden. Ironmak Steelmak, 2020, 47(2): 130 doi: 10.1080/03019233.2018.1492500
|
[23] |
陳許玲, 甘敏, 范曉慧, 等. 有機粘結劑氧化球團固結特性及強化措施. 中南大學學報(自然科學版), 2009, 40(3):550
Chen X L, Gan M, Fan X H, et al. Concretion properties of organic-binder oxidate pellets and strengthen measures. J Central South Univ (Sci Technol), 2009, 40(3): 550
|
[24] |
Cheng G J, Xing Z X, Yang H, et al. Effects of high proportion unground sea sand ore on the preparation process and reduction performance of oxidized pellets. Minerals, 2021, 11(1): 87 doi: 10.3390/min11010087
|
[25] |
Cristallo G, Roncari E, Rinaldo A, et al. Study of anatase–rutile transition phase in monolithic catalyst V2O5/TiO2 and V2O5–WO3/TiO2. Appl Catal A Gen, 2001, 209(1-2): 249 doi: 10.1016/S0926-860X(00)00773-0
|
[26] |
Nova I, Dall’Acqua L, Lietti L, et al. Study of thermal deactivation of a de-NOx commercial catalyst. Appl Catal B Environ, 2001, 35(1): 31 doi: 10.1016/S0926-3373(01)00229-6
|