<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
QIAN Lixin, TAO Jiajie, FAN Chunlong, DING Long, LONG Hongming, YANG Tao, YU Zhengwei. Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite[J]. Chinese Journal of Engineering, 2023, 45(10): 1740-1749. doi: 10.13374/j.issn2095-9389.2022.08.07.001
Citation: QIAN Lixin, TAO Jiajie, FAN Chunlong, DING Long, LONG Hongming, YANG Tao, YU Zhengwei. Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite[J]. Chinese Journal of Engineering, 2023, 45(10): 1740-1749. doi: 10.13374/j.issn2095-9389.2022.08.07.001

Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite

doi: 10.13374/j.issn2095-9389.2022.08.07.001
More Information
  • Corresponding author: E-mail: yaflhm@126.com
  • Received Date: 2022-08-07
    Available Online: 2022-09-29
  • Publish Date: 2023-10-25
  • NH3-selective catalytic reduction of NOx over a V2O5–WO3/TiO2 catalyst is the major control method of NOx and has been successfully promoted and applied in various large steel enterprises in China. The production of waste catalysts (hazardous waste) from flue gas denitrification in iron and steel enterprises increases annually. Harmless landfills and wet purification are widely-employed methods for the treatment of waste catalysts. However, these methods pose environmental problems such as resource wastefulness, excessive amounts of acid/alkali, and considerable secondary pollution. Optimizing the effective use and disposal of such waste catalysts has become a key common problem in the industry. In this work, a novel method for producing titanium-bearing pellets by adding waste catalysts to pellet material was introduced. The feasibility of using waste catalysts to prepare titanium-bearing pellets was comprehensively evaluated by comparing the preparation process and metallurgical properties of the resulting pellets with those of commercially available titanium-containing pellets. The findings of this study reveal that the addition of 5.0% waste catalyst to the raw material can substantially improve the overall comprehensive performance of green pellets. Moreover, the drop number (dropped from 0.5 m height), average compressive strength, and burst temperature of the green pellets increased from 3.8 times, 16.5 N, and 487 ℃ (without waste catalyst addition) to 7.7 times, 21.5 N, and 553 ℃, clearly outperforming the ordinary titanium-bearing pellets prepared using vanadium–titanium magnetite (1.4 times, 15.0 N, and 542 ℃). These results could be attributed to the physical properties of the waste catalyst, which is a porous material with abundant hydrophilic groups on the surface. These hydrophilic groups, comprising hydroxyl groups, lead to the presence of more capillary water on the catalyst particle surfaces. Furthermore, the capillary force played an important role in various interactions in the pelleting process, thus improving the performance of mixtures. After roasting, the average compressive strength of the pellets containing the waste catalyst was 3083 N, higher than the 2630 N for ordinary titanium-bearing pellets. However, the short preheating and roasting time resulted in partially unreacted TiO2 being present in the internal pores of the pellets as rutile-type particles. The consolidation mechanism of pellets containing waste catalysts demonstrated that TiO2 in the waste catalyst reacts with iron oxide to form a Fe2TiO5 bond, while unreacted TiO2 reduces the compressive strength of the pellets. The metallurgical properties of the two titanium-bearing pellets are virtually identical to those of ordinary oxidized pellets, indicating that the pellets containing waste catalysts can be used in blast furnace protection smelting. This study offers a new approach for recycling waste catalysts generated by flue gas denitrification in iron and steel enterprises.

     

  • loading
  • [1]
    于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

    Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
    [2]
    龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865

    Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865
    [3]
    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1

    Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
    [4]
    韋晉科, 張強, 李永光. 燒結機中溫SCR脫硝催化劑失活原因分析. 河北冶金, 2021(12):75

    Wei J K, Zhang Q, Li Y G. Cause analysis of deactivation of medium temperature SCR denitration catalyst in sintering machine. Hebei Metall, 2021(12): 75
    [5]
    丁龍, 錢立新, 楊濤, 等. 燒結煙氣中Zn對V2O5-WO3/TiO2催化劑脫除NOx和二噁英性能的影響. 工程科學學報, 2021, 43(8):1125

    Ding L, Qian L X, Yang T, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst. Chin J Eng, 2021, 43(8): 1125
    [6]
    侯學軍, 章小明, 程文博, 等. 廢釩鈦基SCR催化劑的處置方法研究進展. 化工進展, 2021, 40(10):5313 doi: 10.16085/j.issn.1000-6613.2021-0568

    Hou X J, Zhang X M, Cheng W B, et al. Research on disposal methods of spent vanadium-titanium-based catalysts. Chem Ind Eng Prog, 2021, 40(10): 5313 doi: 10.16085/j.issn.1000-6613.2021-0568
    [7]
    龍紅明, 丁龍, 陶家杰, 等. 燒結煙氣脫硝廢棄釩鎢鈦催化劑資源化利用途徑分析. 鋼鐵, 2022, 57(7):162

    Long H M, Ding L, Tao J J, et al. Analysis on resource utilization of waste vanadium-tungsten-titanium catalyst for denitration of sintering flue gas. Iron Steel, 2022, 57(7): 162
    [8]
    Li M, Liu B, Wang X R, et al. A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration. Chem Eng J, 2018, 342: 1 doi: 10.1016/j.cej.2017.12.132
    [9]
    劉興譽, 賈媛媛, 唐中華, 等. 廢舊SCR脫硝催化劑再生研究進展. 應用化工, 2020, 49(7):1839 doi: 10.3969/j.issn.1671-3206.2020.07.052

    Liu X Y, Jia Y Y, Tang Z H, et al. Research progress on regeneration of waste SCR denitration catalyst. Appl Chem Ind, 2020, 49(7): 1839 doi: 10.3969/j.issn.1671-3206.2020.07.052
    [10]
    何川, 王樂樂, 楊曉寧, 等. 廢棄選擇性催化還原催化劑混摻對新催化劑脫硝性能的影響. 化工進展, 2018, 37(2):581 doi: 10.16085/j.issn.1000-6613.2017-0873

    He C, Wang L L, Yang X N, et al. Effects of spent SCR catalyst blending on the de-NOx activity of new catalyst. Chem Ind Eng Prog, 2018, 37(2): 581 doi: 10.16085/j.issn.1000-6613.2017-0873
    [11]
    Erust C, Akcil A, Bedelova Z, et al. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests. Waste Manag, 2016, 49: 455 doi: 10.1016/j.wasman.2015.12.002
    [12]
    Liu L J, Wang L L, Su S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent. Fuel, 2019, 243: 406 doi: 10.1016/j.fuel.2019.01.160
    [13]
    周昊, 國旭濤, 周明熙. 不同添加劑對廢棄SCR催化劑熔融無害化處理的影響. 動力工程學報, 2017, 37(12):999 doi: 10.3969/j.issn.1674-7607.2017.12.009

    Zhou H, Guo X T, Zhou M X. Influence of different additives on harmless melting treatment of waste SCR catalysts. J Chin Soc Power Eng, 2017, 37(12): 999 doi: 10.3969/j.issn.1674-7607.2017.12.009
    [14]
    Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
    [15]
    Qian L X, Yang T, Long H M, et al. Recycling of waste V2O5–WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach. ACS Sustainable Chem Eng, 2021, 9(48): 16373 doi: 10.1021/acssuschemeng.1c06271
    [16]
    劉東輝, 王曉哲, 張建良, 等. 高爐護爐用含鈦物料應用現狀及調研分析. 中國冶金, 2018, 28(2):1

    Liu D H, Wang X Z, Zhang J L, et al. Application status and investigation of titanium-containing materials in blast furnace protection process. China Metall, 2018, 28(2): 1
    [17]
    Wu J L, Chen H, Sun J, et al. Metallurgical properties and furnace protection practice of different titanium-bearing burdens. Ironmak Steelmak, 2020, 47(10): 1161 doi: 10.1080/03019233.2019.1678845
    [18]
    Sun J, Wang S, Chu M S, et al. Titanium distribution between blast furnace slag and iron for blast furnace linings protection. Ironmak Steelmak, 2020, 47(5): 545 doi: 10.1080/03019233.2018.1557847
    [19]
    Zhao H, Bennici S, Shen J, et al. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42? catalysts. Appl Catal A Gen, 2009, 356(2): 121 doi: 10.1016/j.apcata.2008.12.037
    [20]
    Forsmo S P E, Samskog P O, Bj?rkman B M T. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technol, 2008, 181(3): 321 doi: 10.1016/j.powtec.2007.05.023
    [21]
    陳許玲, 黃云松, 范曉慧, 等. 釩鈦磁鐵礦球團氧化焙燒行為和固結特性. 中南大學學報(自然科學版), 2016, 47(2):359

    Chen X L, Huang Y S, Fan X H, et al. Oxidation roasting behavior and concretion properties of vanadium-titanium magnetite pellet. J Central South Univ (Sci Technol), 2016, 47(2): 359
    [22]
    Gan M, Sun Y F, Fan X H, et al. Preparing high-quality vanadium titano-magnetite pellets for large-scale blast furnaces as ironmaking burden. Ironmak Steelmak, 2020, 47(2): 130 doi: 10.1080/03019233.2018.1492500
    [23]
    陳許玲, 甘敏, 范曉慧, 等. 有機粘結劑氧化球團固結特性及強化措施. 中南大學學報(自然科學版), 2009, 40(3):550

    Chen X L, Gan M, Fan X H, et al. Concretion properties of organic-binder oxidate pellets and strengthen measures. J Central South Univ (Sci Technol), 2009, 40(3): 550
    [24]
    Cheng G J, Xing Z X, Yang H, et al. Effects of high proportion unground sea sand ore on the preparation process and reduction performance of oxidized pellets. Minerals, 2021, 11(1): 87 doi: 10.3390/min11010087
    [25]
    Cristallo G, Roncari E, Rinaldo A, et al. Study of anatase–rutile transition phase in monolithic catalyst V2O5/TiO2 and V2O5–WO3/TiO2. Appl Catal A Gen, 2001, 209(1-2): 249 doi: 10.1016/S0926-860X(00)00773-0
    [26]
    Nova I, Dall’Acqua L, Lietti L, et al. Study of thermal deactivation of a de-NOx commercial catalyst. Appl Catal B Environ, 2001, 35(1): 31 doi: 10.1016/S0926-3373(01)00229-6
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article views (232) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164