<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 6
May  2023
Turn off MathJax
Article Contents
DU Xiao-yan, HAN Wei-sheng, MENG Zi-han, YU Xian-kun, YANG Xiao-jun, ZHANG Hao. Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance[J]. Chinese Journal of Engineering, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005
Citation: DU Xiao-yan, HAN Wei-sheng, MENG Zi-han, YU Xian-kun, YANG Xiao-jun, ZHANG Hao. Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance[J]. Chinese Journal of Engineering, 2023, 45(6): 979-986. doi: 10.13374/j.issn2095-9389.2022.07.18.005

Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance

doi: 10.13374/j.issn2095-9389.2022.07.18.005
More Information
  • Corresponding author: E-mail: fengxu19821018@163.com
  • Received Date: 2022-07-18
    Available Online: 2022-09-14
  • Publish Date: 2023-05-31
  • Steel slag–peanut shell-based activated carbon was prepared using ultrafine steel slag powder and peanut shells through microwave processing. The response surface method was used to evaluate the effects of microwave power, impregnation ratio, steel slag content, and steel slag particle size on the rate of the adsorption of formaldehyde gas by the prepared activated carbon. Subsequently, optimum parameters were calculated for the preparation of activated carbon with the maximum rate of adsorption for formaldehyde gas adsorption. Finally, the activated carbon was characterized by an X-ray infrared spectrometer, field emission scanning electron microscope, and specific surface area and pore size analyzer. Results revealed that the activated carbon prepared using 530 W of microwave power, steel slag powder corresponding to a mesh size 1160, steel slag content equal to 10.8%, and impregnation ratio of 1.25 has the highest formaldehyde adsorption rate. According to the established regression model, the theoretical adsorption rate of formaldehyde gas will be 94.96% under the above optimal preparation conditions. Thus, the prepared activated carbon had a formaldehyde adsorption rate of 94.14%, which is within a 5% error range of the adsorption rate estimated by our regression model for the same conditions. We further demonstrated that our response curve model can predict the adsorption rate of the activated carbon prepared by this process efficiently and that it is feasible to optimize the preparation of activated carbon by the response surface method. Furthermore, the regression analysis further reveals that the degree of influence of the four factors related to this method of preparing activated carbon on the rate of formaldehyde gas adsorption is in the following order, from large to small: microwave power, steel slag content, impregnation ratio, and steel slag fineness. The mutual interaction of the four influencing factors on the formaldehyde gas adsorption rate can be intuitively observed through the three-dimensional response surface graph. Pore structure analysis of the activated carbon prepared using the optimal preparation conditions revealed that it has an H3-type hysteresis loop and a flat-panel slot-like structure. The pore size distribution is uneven, with predominant micropores and small-sized mesopores. Fourier-transform infrared spectroscopy analysis showed that after adding steel slag for modification, the activated carbon had more acidic functional groups, which is beneficial to the adsorption of formaldehyde. Morphological analysis reveals that the layered structure of the activated carbon is clear and that adding a small amount of steel slag is beneficial to improve the rate of pulverization.

     

  • loading
  • [1]
    Yu J, Liang W Y, Wang L, et al. Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci, 2015, 31: 81 doi: 10.1016/j.jes.2014.12.007
    [2]
    Wu F, Yu Q L, Gauvin F, et al. A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal. Resour Conserv Recycl, 2021, 166: 105238 doi: 10.1016/j.resconrec.2020.105238
    [3]
    Shi C H, Wang X C, Zhou S, et al. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J Water Process Eng, 2022, 47: 102666 doi: 10.1016/j.jwpe.2022.102666
    [4]
    張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172

    Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172
    [5]
    張浩, 高青, 韓祥祥, 等. 基于XRF和XRD的熱悶渣改性活性炭降解甲醛機理分析. 光譜學與光譜分析, 2020, 40(5):1447

    Zhang H, Gao Q, Han X X, et al. Mechanism analysis of formaldehyde degradation by hot braised slag modified activated carbon based on XRF and XRD. Spectrosc Spectr Anal, 2020, 40(5): 1447
    [6]
    Li H Z, Guo R T, Chen Y P, et al. Utilization of steel slag as a highly efficient absorbent for SO2 removal at coal-fired power stations. Environ Adv, 2022, 9: 100276 doi: 10.1016/j.envadv.2022.100276
    [7]
    張國成, 白曉光, 鄔虎林, 等. 鋼渣脫硫劑用于濕法石灰石-石膏法脫硫工藝的試驗研究. 鋼鐵研究學報, 2020, 32(7):647

    Zhang G C, Bai X G, Wu H L, et al. Experimental study on desulfurization process of wet limestone-gypsum with steel slag desulfurizer. J Iron Steel Res, 2020, 32(7): 647
    [8]
    應雨錢. 脫硫鋼渣對鹽堿地的改良效果和安全性評價[學位論文]. 杭州: 浙江大學, 2021

    Ying Y Q. Effect and Safety Evaluation of Desulfurized Steel Slag in Improving Saline Alkali Soil [Dissertation]. Hangzhou: Zhejiang University, 2021
    [9]
    Cha W, Kim J, Choi H. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res, 2006, 40(5): 1034 doi: 10.1016/j.watres.2005.12.039
    [10]
    Xu B, Yi Y L. Stabilisation/solidification of lead-contaminated soil by using ladle furnace slag and carbon dioxide. Soils Found, 2022, 62(5): 101205 doi: 10.1016/j.sandf.2022.101205
    [11]
    Liu L Y, Yu X P, Dong X K, et al. The research on formaldehyde concentration distribution in new decorated residential buildings. Procedia Eng, 2017, 205: 1535 doi: 10.1016/j.proeng.2017.10.238
    [12]
    張雙雙. 活性炭改性對氣相污染物甲醛及氨吸附去除影響的研究[學位論文]. 哈爾濱: 東北林業大學, 2015

    Zhang S S. Research on the Effect of Modification of Activated Carbon on the Adsorption Removal of Gas Pollutants of Formaldehyde and Ammonia [Dissertation]. Harbin: Northeast Forestry University, 2015
    [13]
    Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017, 338: 102 doi: 10.1016/j.jhazmat.2017.05.013
    [14]
    肖康, 王瓊. 吸附法凈化室內甲醛研究進展. 化工進展, 2021, 40(10):5747

    Xiao K, Wang Q. Progress in research on adsorption for abatement of indoor formaldehyde. Chem Ind Eng Prog, 2021, 40(10): 5747
    [15]
    Zhang H, Li Z H. MicroRNA–16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med (Wars), 2019, 14: 673 doi: 10.1515/med-2019-0078
    [16]
    Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [17]
    Xing B, Yang G, Chen H L, et al. Catalytic wet oxidation of high concentration formaldehyde wastewater over Pt/nitrogen-doped activated carbon. Reac Kinet Mech Cat, 2019, 126(1): 547 doi: 10.1007/s11144-018-1480-3
    [18]
    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979

    Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [19]
    楊鐸. 基于Gauss-Newton法的空間管形擬合算法的研究. 大連大學學報, 2014, 35(3):19 doi: 10.3969/j.issn.1008-2395.2014.03.005

    Yang D. Space tube-shaped fitting slgorithm based on spatial Gauss-Newton method. J Dalian Univ, 2014, 35(3): 19 doi: 10.3969/j.issn.1008-2395.2014.03.005
    [20]
    牛志睿, 劉羽, 李大海, 等. 響應面法優化制備污泥基活性炭. 環境科學學報, 2014, 34(12):3022

    Niu Z R, Liu Y, Li D H, et al. Optimization of sludge-based activated carbon preparation using response surface methodology. Acta Sci Circumstantiae, 2014, 34(12): 3022
    [21]
    徐如人, 龐文琴, 于吉紅, 等. 分子篩與多孔材料化學. 北京: 科學出版社, 2004

    Xu R R, Pang W Q, Yu J H, et al. Molecular Sieve Combined with Porous Merial Chemistry. Beijing: Science Press, 2004
    [22]
    近藤精一, 石川達雄, 安部郁夫. 吸附科學. 2版. 北京: 化學工業出版社, 2006

    Kondo S, Ishikawa T, Abe I. Adsorption Sciences. 2nd Ed. Beijing: Chemical Industry Press, 2006
    [23]
    王亮才, 劉沙沙, 馬歡歡, 等. 活性炭負載MnO2及其對甲醛的吸附. 應用化工, 2020, 49(5):1110 doi: 10.3969/j.issn.1671-3206.2020.05.011

    Wang L C, Liu S S, Ma H H, et al. Activated carbon loaded MnO2 and its adsorption of formaldehyde. Appl Chem Ind, 2020, 49(5): 1110 doi: 10.3969/j.issn.1671-3206.2020.05.011
    [24]
    Biswas K, Gupta K, Goswami A, et al. Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide. Desalination, 2010, 255(1-3): 44 doi: 10.1016/j.desal.2010.01.019
    [25]
    Takaoka M, Yokokawa H, Takeda N. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene. Appl Catal B Environ, 2007, 74(3-4): 179 doi: 10.1016/j.apcatb.2007.02.009
    [26]
    張浩, 張磊, 龍紅明. 電爐渣超微粉改性生物質廢棄物制備生態活性炭的光譜學分析. 光譜學與光譜分析, 2020, 40(3):861

    Zhang H, Zhang L, Long H M. Spectroscopic analysis of preparation of ecological activated carbon based on electric furnace slag ultrafine powder modified biomass waste material. Spectrosc Spectr Anal, 2020, 40(3): 861
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article views (428) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164