<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
GUO Ju-quan, CAO Sheng. Advances in the performance improvement strategies of tungsten oxide-based electrochromic smart windows[J]. Chinese Journal of Engineering, 2023, 45(5): 840-852. doi: 10.13374/j.issn2095-9389.2022.06.28.002
Citation: GUO Ju-quan, CAO Sheng. Advances in the performance improvement strategies of tungsten oxide-based electrochromic smart windows[J]. Chinese Journal of Engineering, 2023, 45(5): 840-852. doi: 10.13374/j.issn2095-9389.2022.06.28.002

Advances in the performance improvement strategies of tungsten oxide-based electrochromic smart windows

doi: 10.13374/j.issn2095-9389.2022.06.28.002
More Information
  • Corresponding author: E-mail: caosheng@gxu.edu.cn
  • Received Date: 2022-06-28
    Available Online: 2022-10-10
  • Publish Date: 2023-05-01
  • The national strategic goal of “carbon peak and carbon neutrality” can be achieved without lowering living standards by the immediate development of energy saving devices. Where and how to use energy saving devices also must be considered. Energy consumption for building operations occupies a very large proportion of the total energy consumption, with over half of the building operation energy consumption being used for heating and cooling. Electrochromic smart windows can adjust the transmittance of solar radiation into a building by regulating them according to people’s preferences or weather conditions, thereby reducing energy usage. Because electrochromic smart windows use the dual injection of ions and electrons to cause polarization absorption of the material and optical modulation to block solar radiation, they do not require a continuous energy supply to maintain the state, thereby reducing the energy consumption for lighting and cooling while ensuring the building’s aesthetics. Electrochromic materials are the most important part of electrochromic smart windows. Tungsten oxide is a popular electrochromic material and is considered a promising material for electrochromic applications. Tungsten oxide has a large optical modulation range and good stability. After nearly half a century of development, tungsten oxide-based electrochromic smart windows are gradually moving from the laboratory to practical applications. This review will introduce some performance evaluation standards of electrochromic smart windows, including optical modulation range, response time, coloration efficiency, and stability. Based on the performance evaluation standard of electrochromic smart windows, this review provides a summary of several strategies to improve the electrochromic performance of tungsten oxide and presents evaluations of the strategies’ advantages and shortcomings, including the fabrication of oxygen vacancies, doping of heterogeneous metal elements, morphology and size regulation, electrolyte ion screening, and the use of solid electrolytes. Introducing oxygen vacancies in tungsten oxide can improve the optical modulation range; however, it may affect the stability of tungsten oxide. Doping of heterogeneous metal elements can enhance the coloration efficiency at the cost of prolonging the response time. Adjusting morphology and size can shorten the time of electrochromic response; however, it is difficult to control both the morphology and the size of materials. Replacing the electrolyte ion can improve all properties if a suitable ion can be found. Using a solid electrolyte will broaden the scope of tungsten oxide application at the cost of degraded electrochromic properties. Finally, based on the existing problems in the development of electrochromic smart windows and the recently reported promising technologies, this review presents a projection of the development of tungsten oxide-based electrochromic smart windows.

     

  • loading
  • [1]
    中國建筑節能協會. 中國建筑能耗研究報告2020. 建筑節能, 2021, 49(2):1

    China Building Energy Efficiency Association. China building energy consumption annual report 2020. Build Energy Effic, 2021, 49(2): 1
    [2]
    王云鵬, 那威, 田亞鵬, 等. 包含制冷、空調和采暖的我國住宅建筑能耗強度特征. 制冷, 2021, 40(4):57 doi: 10.3969/J.ISSN.1005-9180.2021.04.011

    Wang Y P, Na W, Tian Y P, et al. Characteristics of energy intensity of residential buildings including refrigeration, air conditioning and heating in China. Refrigeration, 2021, 40(4): 57 doi: 10.3969/J.ISSN.1005-9180.2021.04.011
    [3]
    Dun M, Wu L F. Forecasting the building energy consumption in China using grey model. Environ Process, 2020, 7(3): 1009 doi: 10.1007/s40710-020-00438-3
    [4]
    Evangelisti L, Guattari C, Asdrubali F, et al. An experimental investigation of the thermal performance of a building solar shading device. J Build Eng, 2020, 28: 101089 doi: 10.1016/j.jobe.2019.101089
    [5]
    Deb S K. A novel electrophotographic system. Appl Opt, 1969, 8(101): 192
    [6]
    Buckner H B, Perry N H. In situ optical absorption studies of point defect kinetics and thermodynamics in oxide thin films. Adv Mater Interfaces, 2019, 6(15): 1900496 doi: 10.1002/admi.201900496
    [7]
    Shimizu I, Shizukuishi M, Inoue E. Solid-state electrochromic device consisting of amorphous WO3 and Cr2O3. J Appl Phys, 1979, 50(6): 4027 doi: 10.1063/1.326483
    [8]
    Lampert C M. Electrochromic materials and devices for energy efficient windows. Sol Energy Mater, 1984, 11(1-2): 1 doi: 10.1016/0165-1633(84)90024-8
    [9]
    Deb S K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos Mag A J Theor Exp Appl Phys, 1973, 27(4): 801
    [10]
    Faughnan B W, Crandall R S, Heyman P M. Electrochromism in WO3 amorphous films. RCA Rev, 1975, 36(1): 177
    [11]
    Svensson J, Granqvist C G. Electrochromic coatings for smart windows // Proceedings Volume 0502, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion III. San Diego, 1984: 30
    [12]
    Liu Y B, Wang J X, Xiao X D, et al. Synthesis of high-performance electrochromic thin films by a low-cost method. Ceram Int, 2021, 47(6): 7837 doi: 10.1016/j.ceramint.2020.11.130
    [13]
    Wang Z, Gong W B, Wang X Y, et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces, 2020, 12(30): 33917 doi: 10.1021/acsami.0c08270
    [14]
    Kim K W, Yun T Y, You S H, et al. Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Mater, 2020, 12: 84 doi: 10.1038/s41427-020-00257-w
    [15]
    孫天皓, 劉紅均, 伏桂月, 等. WO3薄膜電致變色器件的響應時間測試及其改善方案. 液晶與顯示, 2021, 36(5):641 doi: 10.37188/CJLCD.2020-0293

    Sun T H, Liu H J, Fu G Y, et al. Measuring and improving response time of WO3 thin film electrochromic devices. Chin J Liq Cryst Disp, 2021, 36(5): 641 doi: 10.37188/CJLCD.2020-0293
    [16]
    Yu H, Guo J J, Wang C, et al. High performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation. Electrochimica Acta, 2019, 318: 644 doi: 10.1016/j.electacta.2019.06.129
    [17]
    Wang S, Xu H B, Hao T T, et al. In situ XRD and operando spectra-electrochemical investigation of tetragonal WO3-x nanowire networks for electrochromic supercapacitors. NPG Asia Mater, 2021, 13: 51 doi: 10.1038/s41427-021-00319-7
    [18]
    Jo M H, Kim K H, Ahn H J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices. Chem Eng J, 2022, 445: 136826 doi: 10.1016/j.cej.2022.136826
    [19]
    Zhang S L, Cao S, Zhang T R, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater Horiz, 2018, 5(2): 291 doi: 10.1039/C7MH01128H
    [20]
    Park S, Park H S, Dao T T, et al. Solvothermal synthesis of oxygen deficient tungsten oxide nano-particle for dual band electrochromic devices. Sol Energy Mater Sol Cells, 2022, 242: 111759 doi: 10.1016/j.solmat.2022.111759
    [21]
    Zhang S L, Cao S, Zhang T R, et al. Overcoming the technical challenges in Al anode-based electrochromic energy storage windows. Small Methods, 2020, 4(1): 1900545 doi: 10.1002/smtd.201900545
    [22]
    Nguyen T H Q, Eberheim F, G?bel S, et al. Enhancing the spectroelectrochemical performance of WO3 films by use of structure-directing agents during film growth. Appl Sci, 2022, 12(5): 2327 doi: 10.3390/app12052327
    [23]
    鐘曉嵐, 劉雪晴, 刁訓剛. 基于氧化鎢和氧化鎳的電致變色器件研究進展. 無機材料學報, 2021, 36(2):128 doi: 10.15541/jim20200488

    Zhong X L, Liu X Q, Diao X G. Electrochromic devices based on tungsten oxide and nickel oxide: A review. J Inorg Mater, 2021, 36(2): 128 doi: 10.15541/jim20200488
    [24]
    Yu H, Guo J J, Wang C, et al. Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochimica Acta, 2020, 332: 135504 doi: 10.1016/j.electacta.2019.135504
    [25]
    Li Z X, Liu Z F, Li J W, et al. The electrochromic properties of the film enhanced by introducing oxygen vacancies to crystalline tungsten oxide. Colloids Surf A Physicochem Eng Aspects, 2022, 641: 128615 doi: 10.1016/j.colsurfa.2022.128615
    [26]
    Hasani A, Le Q V, Nguyen T P, et al. A thorough study on electrochromic properties of metal doped tungsten trioxide film prepared by a facile solution process. Electrochimica Acta, 2018, 283: 1195 doi: 10.1016/j.electacta.2018.07.050
    [27]
    Zhou J L, Wei Y X, Luo G, et al. Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J Mater Chem C, 2016, 4(8): 1613 doi: 10.1039/C5TC03750F
    [28]
    Xie S J, Bi Z J, Chen Y B, et al. Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl Surf Sci, 2018, 459: 774 doi: 10.1016/j.apsusc.2018.08.045
    [29]
    Pooyodying P, Ok J W, Son Y H, et al. Electrical and optical properties of electrochromic device with WO3: Mo film prepared by RF magnetron Co-sputtering. Opt Mater, 2021, 112: 110766 doi: 10.1016/j.optmat.2020.110766
    [30]
    Li W L, Zhang J, Zheng Y H, et al. High performance electrochromic energy storage devices based on Mo-doped crystalline/amorphous WO3 core-shell structures. Sol Energy Mater Sol Cells, 2022, 235: 111488 doi: 10.1016/j.solmat.2021.111488
    [31]
    Zhan Y, Tan M R J, Cheng X, et al. Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism. J Mater Chem C, 2017, 5(38): 9995 doi: 10.1039/C7TC02456H
    [32]
    Song Y, Zhang Z Y, Yan L M, et al. Electrodeposition of Ti-doped hierarchically mesoporous silica microspheres/tungsten oxide nanocrystallines hybrid films and their electrochromic performance. Nanomaterials, 2019, 9(12): 1795 doi: 10.3390/nano9121795
    [33]
    Park H S, Park S, Song S H, et al. Effects of Ti-doping amount and annealing temperature on electrochromic performance of sol-gel derived WO3. RSC Adv, 2022, 12(27): 17401 doi: 10.1039/D2RA02247H
    [34]
    Park S, Thuy D T, Sarwar S, et al. Synergistic effects of Ti-doping induced porous networks on electrochromic performance of WO3 films. J Mater Chem C, 2020, 8(48): 17245 doi: 10.1039/D0TC04420B
    [35]
    Wang W Q, Yao Z J, Wang X L, et al. Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. J Colloid Interface Sci, 2019, 535: 300 doi: 10.1016/j.jcis.2018.10.006
    [36]
    Wang L S, Li D, Zhou Y L, et al. Optimization of hydrogen-ion storage performance of tungsten trioxide nanowires by niobium doping. Nanotechnology, 2022, 33(10): 105403 doi: 10.1088/1361-6528/ac3e8e
    [37]
    Olkun A, Pat S, Akkurt N, et al. Detailed transmittance analysis of high-performance SnO2-doped WO3 thin films in UV-Vis region for electrochromic devices. J Mater Sci:Mater Electron, 2020, 31(21): 19074 doi: 10.1007/s10854-020-04444-x
    [38]
    Luo G, Shen L Y, Zheng J M, et al. A europium ion doped WO3 film with the bi-functionality of enhanced electrochromic switching and tunable red emission. J Mater Chem C, 2017, 5(14): 3488 doi: 10.1039/C7TC00248C
    [39]
    Shen L Y, Luo G, Zheng J M, et al. Effect of pH on the electrochromic and photoluminescent properties of Eu doped WO3 film. Electrochimica Acta, 2018, 278: 263 doi: 10.1016/j.electacta.2018.05.033
    [40]
    Kunyapat T, Xu F, Neate N, et al. Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale, 2018, 10(10): 4718 doi: 10.1039/C7NR08385H
    [41]
    Shen L Y, Zheng J M, Xu C Y. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films. Nanoscale, 2019, 11(47): 23049 doi: 10.1039/C9NR06125H
    [42]
    Bathe S R, Patil P S. WO3 thin films doped with Ru by facile chemical method with enhanced electrochromic properties for electrochromic window application. Mater Sci Eng B, 2020, 257: 114542 doi: 10.1016/j.mseb.2020.114542
    [43]
    Yin Y, Lan C Y, Hu S M, et al. Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films. J Alloys Compd, 2018, 739: 623 doi: 10.1016/j.jallcom.2017.12.290
    [44]
    Zeb S, Sun G X, Nie Y, et al. Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications. Mater Adv, 2021, 2(21): 6839 doi: 10.1039/D1MA00418B
    [45]
    Chang J Y, Chen Y C, Wang C M, et al. Electrochromic properties of lithium-doped tungsten oxide prepared by electron beam evaporation. Coatings, 2019, 9(3): 191 doi: 10.3390/coatings9030191
    [46]
    Shen K, Sheng K, Wang Z T, et al. Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties. Appl Surf Sci, 2020, 501: 144003 doi: 10.1016/j.apsusc.2019.144003
    [47]
    Arslan M, Firat Y E, Tokg?z S R, et al. Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications. Ceram Int, 2021, 47(23): 32570 doi: 10.1016/j.ceramint.2021.08.152
    [48]
    Xie Z Q, Zhang Q Q, Liu Q Q, et al. Enhanced electrochromic performance of 2D grid-structured WO3 thin films. Thin Solid Films, 2018, 653: 188 doi: 10.1016/j.tsf.2018.03.044
    [49]
    Yuan G Z, Hua C Z, Khan S, et al. Improved electrochromic performance of WO3 films with size controlled nanorods. Electrochimica Acta, 2018, 260: 274 doi: 10.1016/j.electacta.2017.10.193
    [50]
    Heo S, Dahlman C J, Staller C M, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions. Nano Lett, 2020, 20(3): 2072 doi: 10.1021/acs.nanolett.0c00052
    [51]
    Balaji S, Djaoued Y, Albert A S, et al. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the Li ion occupancy of four-coordinated square windows. Chem Mater, 2009, 21(7): 1381 doi: 10.1021/cm8034455
    [52]
    Evans R C, Ellingworth A, Cashen C J, et al. Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proc Natl Acad Sci USA, 2019, 116(26): 12666 doi: 10.1073/pnas.1822007116
    [53]
    Guo J J, Wang M, Diao X G, et al. Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films. J Phys Chem C, 2018, 122(33): 19037 doi: 10.1021/acs.jpcc.8b05692
    [54]
    Zhao Q, Wang J K, Ai X H, et al. Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy, 2021, 89: 106356 doi: 10.1016/j.nanoen.2021.106356
    [55]
    Chen X, Li W J, Wang L B, et al. Annealing effect on the electrochromic properties of amorphous WO3 films in Mg2+ based electrolytes. Mater Chem Phys, 2021, 270: 124745 doi: 10.1016/j.matchemphys.2021.124745
    [56]
    Huo X T, Miao X W, Han X, et al. High-performance electrochromo-supercapacitors based on the synergetic effect between aqueous Al3+ and ordered hexagonal tungsten oxide nanorod arrays. J Mater Chem A, 2020, 8(19): 9927 doi: 10.1039/D0TA01808B
    [57]
    Li W J, Zhang X, Chen X, et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices. Electrochimica Acta, 2020, 355: 136817 doi: 10.1016/j.electacta.2020.136817
    [58]
    Li W J, Zhang X, Chen X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chem Eng J, 2020, 398: 125628 doi: 10.1016/j.cej.2020.125628
    [59]
    Zhao Y M, Zhang X, Li W J, et al. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device. Sol Energy Mater Sol Cells, 2022, 237: 111564 doi: 10.1016/j.solmat.2021.111564
    [60]
    Jeong C Y, Kubota T, Chotsuwan C, et al. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer. J Electroanal Chem, 2021, 897: 115614 doi: 10.1016/j.jelechem.2021.115614
    [61]
    Shao Z W, Huang A B, Ming C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat Electron, 2022, 5(1): 45 doi: 10.1038/s41928-021-00697-4
    [62]
    菅夏琰, 金俊騰, 王瑤, 等. 鈉離子電池層狀氧化物正極材料研究進展. 工程科學學報, 2022, 44(4):601 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204013

    Jian X Y, Jin J T, Wang Y, et al. Recent progress on layered oxide cathode materials for sodium-ion batteries. Chin J Eng, 2022, 44(4): 601 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204013
    [63]
    Wang C W, Fu K, Kammampata S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev, 2020, 120(10): 4257 doi: 10.1021/acs.chemrev.9b00427
    [64]
    Zhang S L, Li Y, Zhang T R, et al. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode. ACS Appl Mater Interfaces, 2019, 11(51): 48062 doi: 10.1021/acsami.9b17678
    [65]
    Huang Q Y, Cao S, Liu Y W, et al. Boosting the Zn2+-based electrochromic properties of tungsten oxide through morphology control. Sol Energy Mater Sol Cells, 2021, 220: 110853 doi: 10.1016/j.solmat.2020.110853
    [66]
    Chen J, Wang Z, Chen Z G, et al. Fabry-perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Lett, 2020, 20(3): 1915 doi: 10.1021/acs.nanolett.9b05152
    [67]
    武琦, 叢杉, 趙志剛. 多彩氧化鎢薄膜的紅外電致變色性能研究. 無機材料學報, 2021, 36(5):485 doi: 10.15541/jim20200463

    Wu Q, Cong S, Zhao Z G. Infrared electrochromic property of the colorful tungsten oxide films. J Inorg Mater, 2021, 36(5): 485 doi: 10.15541/jim20200463
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (594) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164