Citation: | WANG Lei, LI Meng-le, ZOU Yu-chao, LIAO Yin-fei, MA Zi-long, GUI Xia-hui. Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation[J]. Chinese Journal of Engineering, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001 |
[1] |
Northey S, Mohr S, Mudd G M, et al. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl, 2014, 83: 190 doi: 10.1016/j.resconrec.2013.10.005
|
[2] |
Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
|
[3] |
Wang C, Sun C B, Liu Q. Entrainment of gangue minerals in froth flotation: Mechanisms, models, controlling factors, and abatement techniques—a review. Min Metall Explor, 2021, 38(2): 673
|
[4] |
李洪強, 鄭惠方, 戈武, 等. 浮選過程中的泡沫夾帶研究進展. 金屬礦山, 2018(12):67 doi: 10.19614/j.cnki.jsks.201812012
Li H Q, Zheng H F, Ge W, et al. A review of froth entrainment in flotation process. Met Mine, 2018(12): 67 doi: 10.19614/j.cnki.jsks.201812012
|
[5] |
陸英, 李洪強, 馮其明. 絹云母的夾帶行為及其控制. 中南大學學報(自然科學版), 2015, 46(1):20
Lu Y, Li H Q, Feng Q M. Entrainment behavior and control of sericite. J Central South Univ Sci Technol, 2015, 46(1): 20
|
[6] |
楊斌, 印萬忠, 付亞峰, 等. 檸檬酸對微細粒綠泥石夾帶行為的影響. 東北大學學報(自然科學版), 2019, 40(4):569 doi: 10.12068/j.issn.1005-3026.2019.04.022
Yang B, Yin W Z, Fu Y F, et al. Effect of citric acid on entrainment behavior of fine chlorite. J Northeast Univ Nat Sci, 2019, 40(4): 569 doi: 10.12068/j.issn.1005-3026.2019.04.022
|
[7] |
于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652 doi: 10.13225/j.cnki.jccs.2014.0605
Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652 doi: 10.13225/j.cnki.jccs.2014.0605
|
[8] |
Ndlovu B, Farrokhpay S, Bradshaw D. The effect of phyllosilicate minerals on mineral processing industry. Int J Miner Process, 2013, 125: 149 doi: 10.1016/j.minpro.2013.09.011
|
[9] |
孫志健, 吳熙群, 李成必, 等. 高含泥礦石浮選綜述. 有色金屬(選礦部分), 2020(1):59
Sun Z J, Wu X Q, Li C B, et al. A summary of high content slime ore flotation. Nonferrous Met, 2020(1): 59
|
[10] |
Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores?A critical review. Appl Clay Sci, 2019, 170: 57 doi: 10.1016/j.clay.2019.01.013
|
[11] |
Zheng X, Johnson N W, Franzidis J P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner Eng, 2006, 19(11): 1191 doi: 10.1016/j.mineng.2005.11.005
|
[12] |
Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng, 2011, 24(12): 1314 doi: 10.1016/j.mineng.2011.05.008
|
[13] |
Chen X M, Hadde E, Liu S Q, et al. The effect of amorphous silica on pulp rheology and copper flotation. Miner Eng, 2017, 113: 41 doi: 10.1016/j.mineng.2017.08.001
|
[14] |
Wang L, Peng Y, Runge K. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol, 2016, 288: 202 doi: 10.1016/j.powtec.2015.10.049
|
[15] |
Meng J, Tabosa E, Xie W G, et al. A review of turbulence measurement techniques for flotation. Miner Eng, 2016, 95: 79 doi: 10.1016/j.mineng.2016.06.007
|
[16] |
Ralston J, Fornasiero D, Grano S, et al. Reducing uncertainty in mineral flotation—Flotation rate constant prediction for particles in an operating plant ore. Int J Miner Process, 2007, 84(1-4): 89 doi: 10.1016/j.minpro.2006.08.010
|
[17] |
Loosdrecht M C M, Nielsen P H, Lopez-Vazquez C M, et al. Experimental Methods in Wastewater Treatment. London: IWA Publishing, 2016
|
[18] |
Zhang M, Peng Y J, Xu N. The effect of sea water on copper and gold flotation in the presence of bentonite. Miner Eng, 2015, 77: 93 doi: 10.1016/j.mineng.2015.03.006
|
[19] |
Yianatos J, Contreras F, Díaz F, et al. Direct measurement of entrainment in large flotation cells. Powder Technol, 2009, 189(1): 42 doi: 10.1016/j.powtec.2008.05.013
|
[20] |
Wang L, Runge K, Peng Y. The observed effect of flotation operating conditions and particle properties on water recovery at laboratory scale. Miner Eng, 2016, 94: 83 doi: 10.1016/j.mineng.2016.05.003
|
[21] |
Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Miner Eng, 2003, 16(11): 1123 doi: 10.1016/j.mineng.2003.06.014
|
[22] |
Nguyen A V, Harvey P A, Jameson G J. Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng, 2003, 16(11): 1143 doi: 10.1016/j.mineng.2003.09.005
|
[23] |
Melo F, Laskowski J S. Effect of frothers and solid particles on the rate of water transfer to froth. Int J Miner Process, 2007, 84(1-4): 33 doi: 10.1016/j.minpro.2007.04.003
|
[24] |
Wang L, Li C. A brief review of pulp and froth rheology in mineral flotation. J Chem, 2020, 2020: 3894542
|
[25] |
Yang B, Yin W Z, Zhu Z L, et al. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol, 2019, 354: 358 doi: 10.1016/j.powtec.2019.06.017
|
[26] |
Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
|