Citation: | LI Yu-jie, GUO Zhen, LI Yi-long, RUI Sheng-jie, ZHU Yong-qiang. Advances in MICP reinforcement technology used in island engineering[J]. Chinese Journal of Engineering, 2023, 45(5): 819-832. doi: 10.13374/j.issn2095-9389.2022.06.14.001 |
[1] |
Wu Y, Li N, Wang X Z, et al. Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea. Eng Geol, 2021, 280: 105932 doi: 10.1016/j.enggeo.2020.105932
|
[2] |
Wang X Z, Jiao Y Y, Wang R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Eng Geol, 2011, 120(1-4): 40 doi: 10.1016/j.enggeo.2011.03.011
|
[3] |
DeJong J T, Mortensen B M, Martinez B C, et al. Bio-mediated soil improvement. Ecol Eng, 2010, 36(2): 197 doi: 10.1016/j.ecoleng.2008.12.029
|
[4] |
Martinez B C, DeJong J T, Ginn T R, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng, 2013, 139(4): 587 doi: 10.1061/(ASCE)GT.1943-5606.0000787
|
[5] |
Al Qabany A, Soga K, Santamarina C. Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng, 2012, 138(8): 992 doi: 10.1061/(ASCE)GT.1943-5606.0000666
|
[6] |
van Paassen L A, Daza C M, Staal M, et al. Potential soil reinforcement by biological denitrification. Ecol Eng, 2010, 36(2): 168 doi: 10.1016/j.ecoleng.2009.03.026
|
[7] |
O’Donnell S T, Kavazanjian E Jr, Rittmann B E. MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP. J Geotech Geoenviron Eng, 2017, 143(12): 04017095
|
[8] |
高歆雨. 高鹽環境下微生物誘導鳥糞石固化珊瑚砂技術研究[學位論文]. 泉州: 華僑大學, 2020
Gao X Y. Study on the Technology of Solidifying Coral Sand with Struvite Induced by Microorganisms in High Salt Environment [Dissertation]. Quanzhou: Huaqiao University, 2020
|
[9] |
Yu X N, Qian C X, Xue B. Loose sand particles cemented by different bio-phosphate and carbonate composite cement. Constr Build Mater, 2016, 113: 571 doi: 10.1016/j.conbuildmat.2016.03.105
|
[10] |
Boquet E, Boronat A, Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 1973, 246(5434): 527 doi: 10.1038/246527a0
|
[11] |
Whiffin V S. Microbial CaCO3 Precipitation for the Production of Biocement [Dissertation]. Perth: Murdoch University, 2004
|
[12] |
van Paassen L A. Bio-mediated ground improvement: From laboratory experiment to pilot applications // Geo-Frontiers Congress 2011. Dallas, 2011: 4099
|
[13] |
方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化體單軸損傷本構模型. 地下空間與工程學報, 2018, 14(5):1234
Fang X W, Li J X, Li J, et al. Damage constitutive model of biocemented coral sand columns under unconfined compression. Chin J Undergr Space Eng, 2018, 14(5): 1234
|
[14] |
方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化體三軸壓縮試驗及損傷本構模型研究. 巖土力學, 2018, 39(Suppl 1):1 doi: 10.16285/j.rsm.2017.2101
Fang X W, Li J X, Li J, et al. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns. Rock Soil Mech, 2018, 39(Suppl 1): 1 doi: 10.16285/j.rsm.2017.2101
|
[15] |
歐益希, 方祥位, 申春妮, 等. 顆粒粒徑對微生物固化珊瑚砂的影響. 水利與建筑工程學報, 2016, 14(2):35 doi: 10.3969/j.issn.1672-1144.2016.02.007
Ou Y X, Fang X W, Shen C N, et al. Influence of particle sizes of coral sand on bio-cementation. J Water Resour Archit Eng, 2016, 14(2): 35 doi: 10.3969/j.issn.1672-1144.2016.02.007
|
[16] |
李捷, 方祥位, 申春妮, 等. 顆粒級配對珊瑚砂微生物固化影響研究. 水利與建筑工程學報, 2016, 14(6):7 doi: 10.3969/j.issn.1672-1144.2016.06.002
Li J, Fang X W, Shen C N, et al. Influence of grain composition on coral sand bio-cementation. J Water Resour Archit Eng, 2016, 14(6): 7 doi: 10.3969/j.issn.1672-1144.2016.06.002
|
[17] |
郭紅仙, 李東潤, 馬瑞男, 等. MICP拌和固化鈣質砂一維固結試驗. 清華大學學報(自然科學版), 2019, 59(8):593 doi: 10.16511/j.cnki.qhdxxb.2019.21.018
Guo H X, Li D R, Ma R N, et al. Oedometer test of calcareous sands solidified using the MICP mixing method. J Tsinghua Univ (Sci Technol)
|
[18] |
Khan M N H, Amarakoon G G N N, Shimazaki S, et al. Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria. Mater Trans, 2015, 56(10): 1725 doi: 10.2320/matertrans.M-M2015820
|
[19] |
劉漢龍, 馬國梁, 肖楊, 等. 微生物加固島礁地基現場試驗研究. 地基處理, 2019, 1(1):26
Liu H L, Ma G L, Xiao Y, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands. J Ground Improv, 2019, 1(1): 26
|
[20] |
李洋洋, 方祥位, 歐益希, 等. 底物溶液配比對微生物固化珊瑚砂的影響研究. 水利與建筑工程學報, 2017, 15(6):52 doi: 10.3969/j.issn.1672-1144.2017.06.011
Li Y Y, Fang X W, Ou Y X, et al. Impacts of different substrate solution ratio in biocementation of coral sand. J Water Resour Archit Eng, 2017, 15(6): 52 doi: 10.3969/j.issn.1672-1144.2017.06.011
|
[21] |
歐益希, 方祥位, 張楠, 等. 溶液鹽度對微生物固化珊瑚砂的影響. 后勤工程學院學報, 2016, 32(1):78 doi: 10.3969/j.issn.1672-7843.2016.01.015
Ou Y X, Fang X W, Zhang N, et al. Influence of solution salinity on microbial biocementation of coral sand. J Logist Eng Univ, 2016, 32(1): 78 doi: 10.3969/j.issn.1672-7843.2016.01.015
|
[22] |
李昊, 唐朝生, 劉博, 等. 模擬海水環境下MICP固化鈣質砂的力學特性. 巖土工程學報, 2020, 42(10):1931
Li H, Tang C S, Liu B, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment. Chin J Geotech Eng, 2020, 42(10): 1931
|
[23] |
劉淵, 張友良, 胡晉寧, 等. 模擬海水環境下MICP固化濱海粉細砂的試驗研究. 海南大學學報(自然科學版), 2021, 39(4):390 doi: 10.15886/j.cnki.hdxbzkb.2021.0049
Liu Y, Zhang Y L, Hu J N, et al. MICP-cemented coastal fine sand in simulated seawater environment. Nat Sci J Hainan Univ, 2021, 39(4): 390 doi: 10.15886/j.cnki.hdxbzkb.2021.0049
|
[24] |
肖瑤, 鄧華鋒, 李建林, 等. 海水環境下巴氏芽孢桿菌馴化及鈣質砂固化效果研究. 巖土力學, 2022, 43(2):395
Xiao Y, Deng H F, Li J L, et al. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment. Rock Soil Mech, 2022, 43(2): 395
|
[25] |
董博文, 劉士雨, 俞縉, 等. 基于微生物誘導碳酸鈣沉淀的天然海水加固鈣質砂效果評價. 巖土力學, 2021, 42(4):1104
Dong B W, Liu S Y, Yu J, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP. Rock Soil Mech, 2021, 42(4): 1104
|
[26] |
肖鵬. 微生物溫控加固鈣質砂動力與液化特性研究[學位論文]. 重慶: 重慶大學, 2020
Xiao P. Study on Dynamic and Liquefaction Charcteristics of Temperature Controlled MICP-Treated Calcareous Sand [Dissertation]. Chongqing: Chongqing University, 2020
|
[27] |
申嘉偉, 周博, 張星, 等. MICP對鈣質砂單顆粒的破碎行為影響研究. 高校地質學報, 2021, 27(6):655 doi: 10.16108/j.issn1006-7493.2020056
Shen J W, Zhou B, Zhang X, et al. Study on the effect of MICP on the crushing behavior of calcareous sand particles. Geol J China Univ, 2021, 27(6): 655 doi: 10.16108/j.issn1006-7493.2020056
|
[28] |
王逸杰, 蔣寧俊. 原位激發微生物成礦加固鈣質砂的剪切與壓縮特性研究. 高校地質學報, 2021, 27(6):662 doi: 10.16108/j.issn1006-7493.2020094
Wang Y J, Jiang N J. Direct shear and compressibility behavior of bio-stimulated MICP treated calcareous sand. Geol J China Univ, 2021, 27(6): 662 doi: 10.16108/j.issn1006-7493.2020094
|
[29] |
尹黎陽. 基于微生物誘導碳酸鈣沉淀技術固化纖維加筋鈣質砂的力學性能研究[學位論文]. 南京: 南京大學, 2019
Yin L Y. Experimental Study on the Mechanical Behavior of Fiber Reinforcement Calcareous Sand Cemented by MICP Technology [Dissertation]. Nanjing: Nanjing University, 2019
|
[30] |
林勝強, 雷學文, 孟慶山, 等. 纖維摻量對MICP固化鈣質砂動力特性的影響. 人民長江, 2020, 51(7):181 doi: 10.16232/j.cnki.1001-4179.2020.07.031
Lin S Q, Lei X W, Meng Q S, et al. Influence of fiber contents on dynamic behavior of MICP-treated calcareous sand. Yangtze River, 2020, 51(7): 181 doi: 10.16232/j.cnki.1001-4179.2020.07.031
|
[31] |
Zhao J T, Tong H W, Shan Y, et al. Effects of different types of fibers on the physical and mechanical properties of MICP-treated calcareous sand. Materials, 2021, 14(2): 268 doi: 10.3390/ma14020268
|
[32] |
Zeng H, Yin L Y, Tang C S, et al. Tensile behavior of bio-cemented, fiber-reinforced calcareous sand from coastal zone. Eng Geol, 2021, 294: 106390 doi: 10.1016/j.enggeo.2021.106390
|
[33] |
Li Y J, Guo Z, Wang L Z, et al. Interface shear behavior between MICP-treated calcareous sand and steel. J Mater Civ Eng, 2021, 33(2): 04020455 doi: 10.1061/(ASCE)MT.1943-5533.0003549
|
[34] |
Li Y J, Guo Z, Wang L Z, et al. Shear resistance of MICP cementing material at the interface between calcareous sand and steel. Mater Lett, 2020, 274: 128009 doi: 10.1016/j.matlet.2020.128009
|
[35] |
Lin H, Suleiman M, Jabbour H, et al. Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting. J Geotech Geoenvironmental Eng, 2016, 142(10): 04016045 doi: 10.1061/(ASCE)GT.1943-5606.0001515
|
[36] |
Lin H, Suleiman M, Jabbour H, et al. Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles. Can Geotech J, 2017, 55(4): 1
|
[37] |
Xiao Y, Stuedlein A, Pan Z Y, et al. Toe bearing capacity of precast concrete piles through biogrouting improvement. J Geotech Geoenvironmental Eng, 2020, 146(12): 06020026 doi: 10.1061/(ASCE)GT.1943-5606.0002404
|
[38] |
Tao J L, Li J H, Wang X R, et al. Nature-inspired bridge scour countermeasures: Streamlining and biocementation. J Test Eval, 2018, 46(4): 20170517 doi: 10.1520/JTE20170517
|
[39] |
Montoya B M, Do J, Gabr M A. Distribution and properties of microbially induced carbonate precipitation in underwater sand bed. J Geotech Geoenviron Eng, 2021, 147(10): 04021098 doi: 10.1061/(ASCE)GT.1943-5606.0002607
|
[40] |
Li Y J, Guo Z, Wang L Z, et al. An innovative eco-friendly method for scour protection around monopile foundation. Appl Ocean Res, 2022, 123: 103177 doi: 10.1016/j.apor.2022.103177
|
[41] |
Kou H L, Wu C Z, Ni P P, et al. Assessment of erosion resistance of biocemented sandy slope subjected to wave actions. Appl Ocean Res, 2020, 105: 102401 doi: 10.1016/j.apor.2020.102401
|
[42] |
Salifu E, MacLachlan E, Iyer K R, et al. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Eng Geol, 2016, 201: 96 doi: 10.1016/j.enggeo.2015.12.027
|
[43] |
Kou H L, Liu J H, Zhang P, et al. Ecofriendly improvement of coastal calcareous sandy slope using recycled shredded coconut coir (RSC) and bio-cement. Acta Geotech, 2022: 1
|
[44] |
李藝隆, 國振, 徐強, 等. 海水環境下MICP膠結鈣質砂干濕循環試驗研究. 浙江大學學報(工學版), 2022, 56(9):1740 doi: 10.3785/j.issn.1008-973X.2022.09.007
Li Y L, Guo Z, Xu Q, et al. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment. J Zhejiang Univ (Eng Sci)
|
[45] |
Martinez B C, DeJong J T, Ginn T R. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comput Geotech, 2014, 58: 1 doi: 10.1016/j.compgeo.2014.01.013
|
[46] |
Fauriel S, Laloui L. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Comput Geotech, 2012, 46: 104 doi: 10.1016/j.compgeo.2012.05.017
|
[47] |
Wang X R, Nackenhorst U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation. Adv Water Resour, 2020, 140: 103563 doi: 10.1016/j.advwatres.2020.103563
|
[48] |
唐朝生, 泮曉華, 呂超, 等. 微生物地質工程技術及其應用. 高校地質學報, 2021, 27(6):625 doi: 10.16108/j.issn1006-7493.2021011
Tang C S, Pan X H, Lyu C, et al. Bio-geoengineering technology and the applications. Geol J China Univ, 2021, 27(6): 625 doi: 10.16108/j.issn1006-7493.2021011
|
[49] |
尹黎陽, 唐朝生, 謝約翰, 等. 微生物礦化作用改善巖土材料性能的影響因素. 巖土力學, 2019, 40(7):2525 doi: 10.16285/j.rsm.2018.0520
Yin L Y, Tang C S, Xie Y H, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation. Rock Soil Mech, 2019, 40(7): 2525 doi: 10.16285/j.rsm.2018.0520
|
[50] |
彭劼, 馮清鵬, 孫益成. 溫度對微生物誘導碳酸鈣沉積加固砂土的影響研究. 巖土工程學報, 2018, 40(6):1048 doi: 10.11779/CJGE201806010
Peng J, Feng Q P, Sun Y C. Influences of temperatures on MICP-treated soils. Chin J Geotech Eng, 2018, 40(6): 1048 doi: 10.11779/CJGE201806010
|
[51] |
van Paassen L A V. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation [Dissertation]. Delft: Delft University of Technology, 2009
|
[52] |
Cheng L, Shahin M A, Cord-Ruwisch R, et al. Soil stabilisation by microbial-induced calcite precipitation (MICP): investigation into some physical and environmental aspects // 7th International Congress on Environmental Geotechnics. Melbourne, 2014, 64(12): 1105
|
[53] |
Keykha H A, Asadi A, Zareian M. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil. Geomicrobiol J, 2017, 34(10): 889 doi: 10.1080/01490451.2017.1291772
|
[54] |
Cheng L, Shahin M A, Chu J. Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech, 2019, 14(3): 615 doi: 10.1007/s11440-018-0738-2
|