Citation: | XIAO Peng-cheng, XU Wen-guang, ZHANG Yan, ZHU Li-guang, ZHU Rong, XU Yun-feng. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. doi: 10.13374/j.issn2095-9389.2022.06.10.002 |
[1] |
吳耀光, 肖步慶, 朱立光, 等. 電爐煉鋼鋼鐵原料的現狀分析與展望. 鋼鐵, 2021, 56(11):55 doi: 10.13228/j.boyuan.issn0449-749x.20210170
Wu Y G, Xiao B Q, Zhu L G, et al. Current situation analysis and prospect of iron and steel raw material for electric arc furnace steelmaking. Iron Steel, 2021, 56(11): 55 doi: 10.13228/j.boyuan.issn0449-749x.20210170
|
[2] |
朱榮, 吳學濤, 魏光升, 等. 電弧爐煉鋼綠色及智能化技術進展. 鋼鐵, 2019, 54(8):9 doi: 10.13228/j.boyuan.issn0449-749x.20190188
Zhu R, Wu X T, Wei G S, et al. Development of green and intelligent technologies in electric arc furnace steelmaking processes. Iron Steel, 2019, 54(8): 9 doi: 10.13228/j.boyuan.issn0449-749x.20190188
|
[3] |
上官方欽, 殷瑞鈺, 李煜, 等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86 doi: 10.13228/j.boyuan.issn0449-749x.20200401
Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86 doi: 10.13228/j.boyuan.issn0449-749x.20200401
|
[4] |
王仲亮, 顧超, 王敏, 等. 深度學習在煉鋼過程中的研究進展及應用現狀. 工程科學學報, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html
Wang Z L, Gu C, Wang M, et al. Research progress and application status of deep learning in steelmaking process. Chin J Eng, http://kns.cnki.net/kcms/detail/10.1297.TF.20220506.1903.003.html
|
[5] |
上官方欽, 酈秀萍, 周繼程, 等. 中國廢鋼資源發展戰略研究. 鋼鐵, 2020, 55(6):8 doi: 10.13228/j.boyuan.issn0449-749x.20190427
Shangguan F Q, Li X P, Zhou J C, et al. Strategic research on development of steel scrap resources in China. Iron Steel, 2020, 55(6): 8 doi: 10.13228/j.boyuan.issn0449-749x.20190427
|
[6] |
Ma Y Q. Do iron ore, scrap steel, carbon emission allowance, and seaborne transportation prices drive steel price fluctuations? Resour Policy, 2021, 72: 102115 doi: 10.1016/j.resourpol.2021.102115
|
[7] |
Smirnov N V, Rybin E I. Machine learning methods for solving scrap metal classification task // 2020 International Russian Automation Conference (RusAutoCon). Sochi, 2020: 1020
|
[8] |
Gao Z J, Sridhar S, Spiller D E, et al. Applying improved optical recognition with machine learning on sorting Cu impurities in steel scrap. J Sustain Metall, 2020, 6(4): 785 doi: 10.1007/s40831-020-00300-8
|
[9] |
Koyanaka S, Kobayashi K. Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape. Resour Conserv Recycl, 2010, 54(9): 571 doi: 10.1016/j.resconrec.2009.10.014
|
[10] |
Díaz-Romero D, Sterkens W, Van den Eynde S, et al. Deep learning computer vision for the separation of Cast-and Wrought-Aluminum scrap. Resour Conserv Recycl, 2021, 172: 105685 doi: 10.1016/j.resconrec.2021.105685
|
[11] |
Li Y F, Qin X P, Zhang Z Y, et al. A robust identification method for nonferrous metal scraps based on deep learning and superpixel optimization. Waste Manag Res, 2021, 39(4): 573 doi: 10.1177/0734242X20987884
|
[12] |
Chen S, Hu Z L, Wang C, et al. Research on the process of small sample non-ferrous metal recognition and separation based on deep learning. Waste Manag, 2021, 126: 266 doi: 10.1016/j.wasman.2021.03.019
|
[13] |
Ramsurrun N, Suddul G, Armoogum S, et al. Recyclable waste classification using computer vision and deep learning // 2021 Zooming Innovation in Consumer Technologies Conference (ZINC). Novi Sad, 2021: 11
|
[14] |
梅亞光. 基于機器視覺與LIBS技術的廢鋼智能分類研究[學位論文]. 北京: 北京科技大學, 2021
Mei Y G. Research on Intelligent Classification of Scrap Based on Machine Vision and LIBS Technology [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
|
[15] |
徐鋼, 黎敏, 徐金梧. 機器學習在深沖鋼質量自動判級中的應用. 工程科學學報, 2022, 44(6):1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011
Xu G, Li M, Xu J W. Application of machine learning in automatic discrimination of product quality of deep drawn steel. Chin J Eng, 2022, 44(6): 1062 doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206011
|
[16] |
李江昀, 楊志方, 鄭俊鋒, 等. 深度學習技術在鋼鐵工業中的應用. 鋼鐵, 2021, 56(9):43 doi: 10.13228/j.boyuan.issn0449-749x.20210296
Li J Y, Yang Z F, Zheng J F, et al. Applications of iron and steel industry with deep learning technologies. Iron Steel, 2021, 56(9): 43 doi: 10.13228/j.boyuan.issn0449-749x.20210296
|
[17] |
Wang D L, Zhang Y Q, Pan Y, et al. An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access, 2020, 8: 94010 doi: 10.1109/ACCESS.2020.2994275
|
[18] |
Zhang L, Yang F, Zhang Y D, et al. Road crack detection using deep convolutional neural network // 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, 2016: 3708
|
[19] |
Liu Z D, Li W X, Wei Z H. Qualitative classification of waste textiles based on near infrared spectroscopy and the convolutional network. Text Res J, 2020, 90(9-10): 1057 doi: 10.1177/0040517519886032
|
[20] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Advances in Neural Information Processing Systems. Long Beach, 2017: 30
|
[21] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, 2020: 1571
|
[22] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
|
[23] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
|
[24] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[25] |
Zhu X K, Lyu S C, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 2778
|
[26] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
|
[27] |
Alzubaidi L, Zhang J L, Humaidi A J, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data, 2021, 8(1): 53 doi: 10.1186/s40537-021-00444-8
|