<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
HAN Gui-hong, WANG Zhi-xiao, LIU Bing-bing, SUN Hu, HUANG Yan-fang. Research progress and outlook of refractory materials for high-salt organic liquid waste incinerators[J]. Chinese Journal of Engineering, 2023, 45(8): 1353-1363. doi: 10.13374/j.issn2095-9389.2022.06.09.001
Citation: HAN Gui-hong, WANG Zhi-xiao, LIU Bing-bing, SUN Hu, HUANG Yan-fang. Research progress and outlook of refractory materials for high-salt organic liquid waste incinerators[J]. Chinese Journal of Engineering, 2023, 45(8): 1353-1363. doi: 10.13374/j.issn2095-9389.2022.06.09.001

Research progress and outlook of refractory materials for high-salt organic liquid waste incinerators

doi: 10.13374/j.issn2095-9389.2022.06.09.001
More Information
  • High-salt, organic waste liquids are characterized as having high COD value, complex composition, strong acidity or alkalinity, high salinity, and poor biodegradability, resulting in them contributing to environmental pollution. High-temperature incineration technology to treat high-concentration organic waste liquid has obvious advantages of thorough treatment, reduced effluents, and near-universal applicability to the many types of complex organic substances. Additionally, it is an effective way to dispose of high-salt, liquid chemical waste. Due to the complex composition and the high salt content of high-salt organic liquid waste, the high-temperature slag causes serious erosion to the refractory material of the incinerator during use. Damaged incinerator refractory linings are significant safety hazards and can cause major economic losses. It is crucial to study and understand the corrosion resistance of refractory materials very well. This paper introduces the main types of refractory materials suitable for high-salt organic waste liquid incinerators, the main types of incinerators and their applications, and finally, describes the mechanism of erosion of the refractory materials in detail. Based on the characteristics of the incineration process of phenol and acetone coproduction organic liquid waste, a method was proposed for the in situ anticorrosion treatment of high-salt organic liquid waste using traditional corundum–mullite refractory materials. The slag enters the refractory material through pores on the interface and reacts strongly with the refractory material surface at 1000–1300 ℃ to produce a low-melting, liquid phase product. The thermal stress of the product is different from that of the original refractory material. If it falls off and is damaged, the service life of the refractory material is extremely short, and the replacement cycle is only 3 months. The addition of Cr2O3 powder to the waste liquid is eventually deposited at the interface of the refractory material after the liquid waste is incinerated and forms an antierosion, refractory, solid solution layer. The corrosion-resistant layer on the surface of the refractory brick rarely reacts with the molten slag to form a low melting point phase. The protective layer can effectively slow down the penetration and erosion of the refractory materials by the slag. The preliminary test run results show that adding 5% Cr2O3 to the liquid waste can prolong the service life of corundum–mullite refractory bricks to several days. This study demonstrated that the in situ strengthening method to improve the corrosion resistance of conventional refractory materials is economical and efficient and shows good prospects of popularization and application.

     

  • loading
  • [1]
    趙瑩, 趙騰飛, 張家赫, 等. 含堿廢液焚燒爐耐火材料研究進展. 中國特種設備安全, 2020, 36(11):15

    Zhao Y, Zhao T F, Zhang J H, et al. Research progress of refractories for alkali-containing waste liquid incinerator. China Special Equip Saf, 2020, 36(11): 15
    [2]
    王勝南. 高鹽有機廢水的處理與研究進展. 化工設計通訊, 2019, 45(12):239

    Wang S N. Progress in treatment and research of high-salt organic wastewater. Chem Eng Des Commun, 2019, 45(12): 239
    [3]
    曹美玲, 李海, 劉佛財, 等. 高鹽有機廢水的處理與研究進展. 有色金屬科學與工程, 2019, 10(3):92

    Cao M L, Li H, Liu F C, et al. Recent development in the treatment process for high salt organic wastewater. Nonferrous Met Sci Eng, 2019, 10(3): 92
    [4]
    Ghazi N M, Lastra A A, Watts M J. Hydroxyl radical (OH) scavenging in young and mature landfill leachates. Water Res, 2014, 56: 148 doi: 10.1016/j.watres.2014.03.001
    [5]
    繆樹輝, 孔繁榮, 來繼云. 化工生產有機廢液無害化處理的改造與實踐. 化工管理, 2021(27):30

    Miao S H, Kong F R, Lai J Y. Reformation and practice of harmless treatment of organic waste liquid from chemical production. Chem Enterp Manag, 2021(27): 30
    [6]
    王俊力, 陳桂發, 劉福興, 等. 臭氧氧化-苦草深度處理對豬場尾水中有機物的去除效果. 生態與農村環境學報, 2017, 33(1):84

    Wang J L, Chen G F, Liu F X, et al. Efficiency of ozonation combined with cultivation of vallisneria natans removing organic substances in piggery wastewater. J Ecol Rural Environ, 2017, 33(1): 84
    [7]
    覃誠真, 楊子超. 萃取化學. 桂林: 廣西師范大學出版社, 1991

    Tan C Z, Yang Z C. Extraction Chemistry. Guilin: Guangxi Normal University Press, 1991
    [8]
    陳浩, 張楓, 王中正, 等. 高鹽廢水處理技術研究進展. 廣州化工, 2017, 45(22):17

    Chen H, Zhang F, Wang Z Z, et al. Study on treatment of wastewater with high salinity. Guangzhou Chem Ind, 2017, 45(22): 17
    [9]
    Yankov D, Molinier J, Albet J, et al. Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochem Eng J, 2004, 21(1): 63 doi: 10.1016/j.bej.2004.03.006
    [10]
    Ferreira A M, Coutinho J A P, Fernandes A M, et al. Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems. Sep Purif Technol, 2014, 128: 58 doi: 10.1016/j.seppur.2014.02.036
    [11]
    唐林, 謝濠江, 徐慧遠, 等. 有機高鹽廢水處理技術與發展展望. 氯堿工業, 2021, 57(8):18

    Tang L, Xie H J, Xu H Y, et al. Development prospect of treatment technology of high salinity organic wastewater. Chlor Alkali Ind, 2021, 57(8): 18
    [12]
    王兵, 施斌, 來進和, 等. 高鹽有機廢水處理研究現狀及應用. 水處理技術, 2020, 46(3):5

    Wang B, Shi B, Lai J H, et al. Research status and application of high-salt organic wastewater treatment. Technol Water Treat, 2020, 46(3): 5
    [13]
    王亞光, 劉曉明. 赤泥基光催化材料降解水中有機污染物的應用現狀及發展趨勢. 工程科學學報, 2021, 43(1):22

    Wang Y G, Liu X M. Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water. Chin J Eng, 2021, 43(1): 22
    [14]
    李興, 勾芒芒, 劉學峰, 等. 高鹽廢水處理現狀及研究進展. 水處理技術, 2019, 45(5):6

    Li X, Gou M M, Liu X F, et al. Research status and progress on treatment of high-salt wastewater. Technol Water Treat, 2019, 45(5): 6
    [15]
    Procházka J, Heyberger A, Volaufová E. Extraction equilibrium of dicarboxylic acids with tertiary amine in single and binary diluents. Sep Sci Technol, 2005, 39(5): 1073 doi: 10.1081/SS-120028572
    [16]
    李柄緣, 劉光全, 王瑩, 等. 高鹽廢水的形成及其處理技術進展. 化工進展, 2014, 33(2):493

    Li B Y, Liu G Q, Wang Y, et al. Formation and treatment of high-salt wastewater. Chem Ind Eng Prog, 2014, 33(2): 493
    [17]
    羅秀朋, 魏宏大, 董志明. 用于處理BDO/PTMEG裝置廢液的焚燒爐設計. 化學工程, 2020, 48(5):6

    Luo X P, Wei H D, Dong Z M. Design of incinerator for treating BDO/PTMEG devices wastewater. Chem Eng China, 2020, 48(5): 6
    [18]
    葉杰, 陳燕芳. 高濃度制藥有機廢液的焚燒處理方法研究. 化工管理, 2019(26):100

    Ye J, Chen Y F. Study on incineration treatment method of high concentration pharmaceutical organic waste liquor. Chem Enterp Manag, 2019(26): 100
    [19]
    左武, 周尤超, 葛仕福, 等. 高含鹽有機廢液熱處理技術研究進展. 環境工程, 2018, 36(4):47

    Zuo W, Zhou Y C, Ge S F, et al. Development of thermal treatment of high-salt organic wastewater. Environ Eng, 2018, 36(4): 47
    [20]
    張紹坤. 焚燒法處理高濃度有機廢液的技術探討. 工業爐, 2011, 33(5):25 doi: 10.3969/j.issn.1001-6988.2011.05.006

    Zhang S K. Research of incineration treatment technology on high-concentration organic wastewater. Ind Furn, 2011, 33(5): 25 doi: 10.3969/j.issn.1001-6988.2011.05.006
    [21]
    孫恕堅, 趙娟, 端午祥, 等. 多股含鹽有機廢液焚燒及余熱回收裝置工程應用. 中國石油和化工標準與質量, 2019, 39(23):96 doi: 10.3969/j.issn.1673-4076.2019.23.047

    Sun S J, Zhao J, Duan W X, et al. Engineering application of multi-strand saline organic waste liquid incineration and waste heat recovery device. China Petroleum Chem Stand Qual, 2019, 39(23): 96 doi: 10.3969/j.issn.1673-4076.2019.23.047
    [22]
    李家珍. 簡述國外高濃度含鹽染料廢水焚燒技術. 化工給排水設計, 1993, 24(3):1

    Li J Z. Brief introduction of incineration technology of high concentration saline dye wastewater abroad. Ind Water Wastewater, 1993, 24(3): 1
    [23]
    呂宏俊, 郭和民. 焚燒法處理有機廢液的工藝選擇. 中國環保產業, 2005(12):36 doi: 10.3969/j.issn.1006-5377.2005.12.017

    Lu H J, Guo H M. Process selection on organic waste liquors treated by incinerating method. China Environ Prot Ind, 2005(12): 36 doi: 10.3969/j.issn.1006-5377.2005.12.017
    [24]
    Lin W G, Dam-Johansen K, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors. Chem Eng J, 2003, 96(1-3): 171 doi: 10.1016/j.cej.2003.08.008
    [25]
    錢惠國. 回轉窯式廢棄物焚燒爐的設計. 動力工程, 2002, 22(3):1819

    Qian H G. Design of rubbish-burning furnace in revolving tubular kiln-model. Power Eng, 2002, 22(3): 1819
    [26]
    余傳林, 王祺, 關小川, 等. 一體化懸浮焚燒處理高濃度含鹽有機廢液鍋爐技術. 節能技術, 2020, 38(3):247 doi: 10.3969/j.issn.1002-6339.2020.03.012

    Yu C L, Wang Q, Guan X C, et al. Integrated suspension incineration technology for high concentration organic wastewater containing salt. Energy Conserv Technol, 2020, 38(3): 247 doi: 10.3969/j.issn.1002-6339.2020.03.012
    [27]
    岑可法, 徐旭, 谷月玲, 等. 工業廢棄物和生活垃圾流化床焚燒技術的研究. 西安交通大學學報, 2000, 34(1):1 doi: 10.3321/j.issn:0253-987X.2000.01.001

    Cen K F, Xu X, Gu Y L, et al. Research of waste incineration technology in the fluidized bed. J Xian Jiaotong Univ, 2000, 34(1): 1 doi: 10.3321/j.issn:0253-987X.2000.01.001
    [28]
    陳曉平, 趙長遂, 沈來宏, 等. 流化床焚燒技術在有機廢液無害化處理領域的應用. 鍋爐技術, 2001, 32(9):25

    Chen X P, Zhao C S, Shen L H, et al. The application of fluidized bed incineration technology in the field of organic waste liquid disposal. Boil Technol, 2001, 32(9): 25
    [29]
    陳金思, 金鑫, 胡獻國. 有機廢液焚燒技術的現狀及發展趨勢. 安徽化工, 2011, 37(5):9

    Chen J S, Jin X, Hu X G. Present research and development trends of organic liquid waste incineration technology. Anhui Chem Ind, 2011, 37(5): 9
    [30]
    李斌, 楊家林, 蔣旭光, 等. 高濃度有機廢液的流化床焚燒技術及二次污染物排放特性研究. 浙江大學學報(工學版), 2000, 34(2):152

    Li B, Yang J L, Jiang X G, et al. Fluidized bed incineration of the high concentration organic waste liquid and the secondary pollutant emission. J Zhejiang Univ Eng Sci, 2000, 34(2): 152
    [31]
    Sperber J, Burgard R, Duennes F J. Innovative lining concepts for hazardous waste incineration. Refract World Forum, 2012, 4: 85
    [32]
    桂劍紅. 處理廢棄物用焚燒爐和熔融爐及其耐火材料. 國外耐火材料, 2001, 26(2):15

    Gui J H. Incinerator and melting furnace for waste treatment and refractory materials thereof. Foreign Refract, 2001, 26(2): 15
    [33]
    廖建國. 廢棄物熔融爐及其所用耐火材料. 國外耐火材料, 2003, 28(6):1

    Liao J G. Status of refractories used in waste melting furnace. Foreign Refract, 2003, 28(6): 1
    [34]
    Ren B, Li Y W, Nath M, et al. Enhanced alkali vapor attack resistance of bauxite-SiC refractories for the working lining of cement rotary kilns via incorporation of andalusite. Ceram Int, 2018, 44(18): 22113 doi: 10.1016/j.ceramint.2018.08.323
    [35]
    Chen D, Gu H Z, Huang A, et al. Towards chrome-free lining for plasma gasifiers using the CA6–SiC castable based on high-temperature water vapor corrosion. Ceram Int, 2019, 45(9): 12429 doi: 10.1016/j.ceramint.2019.03.175
    [36]
    Gallet-Doncieux A, Bahloul O, Gault C, et al. Investigations of SiC aggregates oxidation: Influence on SiC castables refractories life time at high temperature. J Eur Ceram Soc, 2012, 32(4): 737 doi: 10.1016/j.jeurceramsoc.2011.10.044
    [37]
    Heuer A H, Lou V L K. Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation. J Am Ceram Soc, 1990, 73(10): 2789 doi: 10.1111/j.1151-2916.1990.tb06677.x
    [38]
    謝靜. 堿回收爐用無鉻耐火材料組成及抗堿性能的研究[學位論文]. 武漢: 武漢科技大學, 2014

    Xie J. The Research on the Composition and Alkali Resistance of Chrome Free Refractory for Alkali Recovery Furnace [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2014
    [39]
    余亞蘭. 煤催化氣化爐用無鉻耐火材料研究及爐襯結構設計[學位論文]. 武漢: 武漢科技大學, 2017

    Yu Y L. Research on Chrome Free Refractory and Lining Structure Design for Coal Catalytic Gasifier [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2017
    [40]
    Maity M, Al-Zahrani E. 苛性垃圾焚燒爐中高鋁耐火材料爐襯的性能 // 國際耐火材料會議. 鄭州, 2012: 242

    Maity M, Al-Zahrani E. Performance of high alumina refractory lining in caustic waste incinerator // International Conference on Refractory Materials. Zhengzhou, 2012: 242
    [41]
    范沐旭, 侯曉靜. 危廢焚燒爐二次燃燒室用鋁硅系耐火材料耐高溫侵蝕性對比試驗. 耐火與石灰, 2019, 44(3):41

    Fan M X, Hou X J. Hot corrosion resistance of aluminosilicate refractories-comparative tests in the secondary combustion chamber of a hazardous waste incinerator. Refract &Lime, 2019, 44(3): 41
    [42]
    陳肇友. 化學熱力學與耐火材料. 北京: 冶金工業出版社, 2005

    Chen Z Y. Chemical Thermodynamics of Refractories. Beijing: Metallurgical Industry Press, 2005
    [43]
    Bondioli F, Ferrari A M, Leonelli C, et al. Reaction mechanism in alumina/chromia (Al2O3–Cr2O3) solid solutions obtained by coprecipitation. J Am Ceram Soc, 2004, 83(8): 2036 doi: 10.1111/j.1151-2916.2000.tb01508.x
    [44]
    Lim K H. Investigations and design considerations for the refractory lining of coal gasifiers. Int Ceram Rev, 1983, 32(4): 34
    [45]
    Manfredo L J, McNally R N. Solubility of refractory oxides in soda-lime glass. J Am Ceram Soc, 1984, 67(8): C-155
    [46]
    蔣明學, 李勇, 陳開獻. 陳肇友耐火材料論文選. 增訂版. 北京: 冶金工業出版社, 2011

    Jiang M X, Li Y, Chen K X. Selected Papers on Refractories by Chen Zhaoyou. Revised Ed. Beijing: Metallurgical Industry Press, 2011
    [47]
    Funari V, Gomes H I, Coppola D, et al. Opportunities and threats of selenium supply from unconventional and low-grade ores: A critical review. Resour Conserv Recycl, 2021, 170: 105593 doi: 10.1016/j.resconrec.2021.105593
    [48]
    張光輝. 淺談我國耐火材料工業的發展. 中國建材, 2007, 56(2):63 doi: 10.3969/j.issn.1000-0836.2007.02.023

    Zhang G H. On the development of refractory industry in China. China Build Mater, 2007, 56(2): 63 doi: 10.3969/j.issn.1000-0836.2007.02.023
    [49]
    徐維忠. 耐火材料. 北京: 冶金工業出版社, 2002

    Xu W Z. Refractories. Beijing: Metallurgical Industry Press, 2002
    [50]
    Huang A, Wang Y J, Zou Y S, et al. Dynamic interaction of refractory and molten steel: Corrosion mechanism of alumina-magnesia castables. Ceram Int, 2018, 44(12): 14617 doi: 10.1016/j.ceramint.2018.05.085
    [51]
    江東亮, 袁渭康, 錢鋒. 我國高耗能工業高溫熱工裝備節能科技發展戰略研究. 北京: 科學出版社, 2017

    Jiang D L, Yuan W K, Qian F. Sci-tech Development Strategy Research on Energy Saving of High Energy Consuming Industrial Heating Equipment in China. Beijing: Science Press, 2017
    [52]
    王壽增, 顧靜, 苗蔚, 等. 工業窯爐中幾種爐襯耐火材料結構的傳熱分析. 稀有金屬材料與工程, 2009, 38(增刊 2):1259

    Wang S Z, Gu J, Miao W, et al. Heat transfer analysis of several industrial furnace lining refractory structures. Rare Met Mater Eng, 2009, 38(Suppl 2): 1259
    [53]
    羅旭東. 銅冶煉工藝用耐火材料內襯的使用及損毀機理回顧 (1). 耐火與石灰, 2015, 40(3):21

    Luo X D. Review on the use and damage mechanism of refractory lining for copper smelting process (1). Refract &Lime, 2015, 40(3): 21
    [54]
    Huang F, Liu C, Maruoka N, et al. Dissolution behaviour of MgO based refractories in CaO–Al2O3–SiO2 slag. Ironmak Steelmak, 2015, 42(7): 553 doi: 10.1179/1743281215Y.0000000003
    [55]
    李正平. 煉銅轉爐用耐火材料損毀機理研究[學位論文]. 西安: 西安建筑科技大學, 2003

    Li Z P. The Study of Corrosion Mechanism of Refractory used in Copper Converter Furnace [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2003
    [56]
    Ren B, Li Y W, Nath M, et al. Abrasion resistance and thermal conductivity of ZrO2-containing bauxite refractories in the transition zone of a cement kiln. Ceram Int, 2018, 44(15): 18942 doi: 10.1016/j.ceramint.2018.07.132
    [57]
    陳光華, 鄧金祥. 納米薄膜技術與應用. 北京: 化學工業出版社, 2004

    Chen G H, Deng J X. Nano Thin Film Technology and Application. Beijing: Chemical Industry Press, 2004
    [58]
    Kumar K, Singh R K, Datta R. Water wettable graphite through nanotechnology and its application in refractories. Interceram-Int Ceram Rev, 2017, 66(1): 30
    [59]
    畢玉保, 王慧芳, 王銘, 等. 微波熔鹽法制備SiC改性石墨. 耐火材料, 2017, 51(6):418 doi: 10.3969/j.issn.1001-1935.2017.06.004

    Bi Y B, Wang H F, Wang M, et al. Synthesis of SiC modified graphite in molten salts by microwave heating. Refractories, 2017, 51(6): 418 doi: 10.3969/j.issn.1001-1935.2017.06.004
    [60]
    Ye J K, Zhang S W, Lee W E. Molten salt synthesis and characterization of SiC coated carbon black particles for refractory castable applications. J Eur Ceram Soc, 2013, 33(10): 2023 doi: 10.1016/j.jeurceramsoc.2013.02.011
    [61]
    Aboutalebi M R, Isac M, Guthrie R I L. The behaviour of selenium impurities during the addition of Se-containing manganese to steel melt. Steel Res Int, 2004, 75: 366 doi: 10.1002/srin.200405782
    [62]
    Braulio M, Martinez A T, Luz A, et al. Basic slag attack of spinel-containing refractory castables. Ceram Int, 2011, 37(6): 1935 doi: 10.1016/j.ceramint.2011.02.007
    [63]
    Dai Y X, Li J, Yan W, et al. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process. J Mater Res Technol, 2020, 9(3): 4292 doi: 10.1016/j.jmrt.2020.02.055
    [64]
    Weinberg V A, Varona C, Chaucherie X, et al. Corrosion of Al2O3?SiO2 refractories by sodium and sulfur vapors: A case study on hazardous waste incinerators. Ceram Int, 2017, 43(7): 5743 doi: 10.1016/j.ceramint.2017.01.116
    [65]
    陳清艷, 白曉琴. 不同鉀鈉含量的焚燒爐渣對焚燒爐用鋁鉻鋯磚的侵蝕. 耐火材料, 2013, 47(5):382 doi: 10.3969/j.issn.1001-1935.2013.05.017

    Chen Q Y, Bai X Q. Erosion of Al-Cr-Zr bricks for incinerators by incineration slag with different potassium and sodium contents. Refractories, 2013, 47(5): 382 doi: 10.3969/j.issn.1001-1935.2013.05.017
    [66]
    Chen D, Huang A, Gu H Z, et al. Corrosion of Al2O3–Cr2O3 refractory lining for high-temperature solid waste incinerator. Ceram Int, 2015, 41(10): 14748 doi: 10.1016/j.ceramint.2015.07.202
    [67]
    Shi X G, Li B S, Liu H Y, et al. The corrosion resistance mechanisms of the cr-coated SiC in molten Na2SO4 salt: Strengthened boundaries and protective scales. Corros Sci, 2021, 185: 109421 doi: 10.1016/j.corsci.2021.109421
    [68]
    Liu J K, Hao Z, Cui Z X, et al. Oxidation behavior, thermal stability, and the coating/substrate interface evolution of CrN-coated Zircaloy under high-temperature steam. Corros Sci, 2021, 185: 109416 doi: 10.1016/j.corsci.2021.109416
    [69]
    Kim H B, Oh M S. Changes in microstructure of a high chromia refractory due to interaction with infiltrating coal slag in a slagging gasifier environment. Ceram Int, 2008, 34(8): 2107 doi: 10.1016/j.ceramint.2007.08.010
    [70]
    Pérez I, Moreno-Ventas I, Parra R, et al. Comparative analyses of the infiltration of Al–Cr–O and Mg–Cr–O refractories by molten phases in the copper-making process using the sessile drop technique. Boletín De La Sociedad Espa?ola De Cerámica Y Vidrio, 2020, 59(1): 15
    [71]
    Kaiser A, Lobert M, Telle R. Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc, 2008, 28(11): 2199 doi: 10.1016/j.jeurceramsoc.2007.12.040
    [72]
    Riu D H, Kong Y M, Kim H E. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. J Eur Ceram Soc, 2000, 20(10): 1475 doi: 10.1016/S0955-2219(00)00023-6
    [73]
    Gómez-Rodríguez C, Antonio-Zárate Y, Revuelta-Acosta J, et al. Research and development of novel refractory of MgO doped with ZrO2 nanoparticles for copper slag resistance. Materials, 2021, 14(9): 2277 doi: 10.3390/ma14092277
    [74]
    Kwong K, Petty A, Bennett J, et al. Wear mechanisms of chromia refractories in slagging gasifiers. Int J Appl Ceram Technol, 2007, 4(6): 503 doi: 10.1111/j.1744-7402.2007.02175.x
    [75]
    彭光春, 賈文超, 喬芊芊, 等. 鋁合金表面水滑石薄膜的制備及其耐蝕性研究進展. 工程科學學報, 2020, 42(1):1

    Peng G C, Jia W C, Qiao Q Q, et al. Research progress on the preparation and corrosion resistance of layered double hydroxides film on aluminum alloys. Chin J Eng, 2020, 42(1): 1
    [76]
    Kenneth Kaneko T, Zhu J X, Howell N, et al. The effects of gasification feedstock chemistries on the infiltration of slag into the porous high chromia refractory and their reaction products. Fuel, 2014, 115: 248 doi: 10.1016/j.fuel.2013.06.052
    [77]
    Zhang P, Fu Q G, Cheng C Y, et al. Microstructure evolution of in-situ SiC–HfB2–Si ternary coating and its corrosion behaviors at ultra-high temperatures. J Eur Ceram Soc, 2021, 41(13): 6223 doi: 10.1016/j.jeurceramsoc.2021.05.058
    [78]
    Li Y H, Meng F P, Ge F F, et al. Improved oxidation resistance through an in-situ formed diffusion barrier: Oxidation behavior of amorphous multi-component FeCrAlMoSiY-coated Zr in high-temperature steam. Corros Sci, 2021, 189: 109566 doi: 10.1016/j.corsci.2021.109566
    [79]
    Han G H, Wang Z X, Liu B B, et al. In-situ improved corrosion resistance of corundum-mullite refractory for the incineration of hazardous spent high-salt organic liquor by Cr2O3: Interfacial anti-erosion mechanism. Ceram Int, 2022, 48(9): 12395 doi: 10.1016/j.ceramint.2022.01.104
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (529) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164