Citation: | LIU Lang, XIE Lei, ZHU Meng-bo, RUAN Shi-shan, SUN Wei-ji, SHAO Cheng-cheng. Properties of ultrahigh fluidity modified magnesium slag-based filling materials[J]. Chinese Journal of Engineering, 2023, 45(8): 1324-1334. doi: 10.13374/j.issn2095-9389.2022.06.06.001 |
[1] |
胡炳南, 劉鵬亮, 崔鋒, 等. 我國充填采煤技術回顧及發展現狀. 煤炭科學技術, 2020, 48(9):39
Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39
|
[2] |
劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1
|
[3] |
Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build Environ, 2022, 218: 109155 doi: 10.1016/j.buildenv.2022.109155
|
[4] |
Zhu M B, Cheng J Y, Zhang Z. Quality control of microseismic P-phase arrival picks in coal mine based on machine learning. Comput Geosci, 2021, 156: 104862 doi: 10.1016/j.cageo.2021.104862
|
[5] |
朱夢博, 劉浪, 王雙明, 等. 短−長壁工作面充填無煤柱開采方法研究. 采礦與安全工程學報, https://doi.org/10.13545/j.cnki.jmse.2021.0580
Zhu M B, Liu L, Wang S M, et al. Short- and long-walls backfilling pillarless coal mining method. J Min Safety Eng, https://doi.org/10.13545/j.cnki.jmse.2021.0580
|
[6] |
楊志強, 陳得信, 高謙, 等. 粗骨料充填料漿長距離管道輸送關鍵技術. 廣西大學學報(自然科學版), 2016, 41(4):1306
Yang Z Q, Chen D X, Gao Q, et al. Key technologies in long-distance pipeline transportation of coarse aggregate coarse aggregate. J Guangxi Univ Nat Sci Ed, 2016, 41(4): 1306
|
[7] |
劉豐韜, 丁劍鋒, 陳國平, 等. 深井長距離大倍線高濃度自流充填技術研究. 金屬礦山, 2014(2):40
Liu F T, Ding J F, Chen G P, et al. Study on the high-density gravity-flow backfilling technology of deep-well long-distance with large time line. Met Mine, 2014(2): 40
|
[8] |
楊天雨, 喬登攀, 王俊, 等. 廢石?風砂高濃度料漿管道輸送數值模擬及管輸阻力新模型. 中國有色金屬學報, 2021, 31(1):234
Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock- aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234
|
[9] |
張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918
Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918
|
[10] |
盛佳, 萬文, 鄭伯坤, 等. 粗骨料長距離復雜工況下向泵送充填技術與應用. 礦業研究與開發, 2022, 42(3):140
Sheng J, Wan W, Zheng B K, et al. Downward pumping filling of coarse aggregate technology under long distance and complex conditions. Min Res Dev, 2022, 42(3): 140
|
[11] |
Luo T, Wang Q, Zhuang S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094
|
[12] |
陳杰, 梁楊芝, 王俊, 等. 高沙充填材料的輸送性能研究. 硅酸鹽通報, 2020, 39(1):194
Chen J, Liang Y Z, Wang J, et al. Research on transport characteristic of high sand content filling material. Bull Chin Ceram Soc, 2020, 39(1): 194
|
[13] |
呂晨, 劉加平, 田義, 等. 疏水礦物對高強自密實混凝土流動性能及強度的影響. 東南大學學報(自然科學版), 2022, 52(2):263
Lü C, Liu J P, Tian Y, et al. Influence of hydrophobic minerals on fluidity and strength of high-strength self-compacting concrete. J Southeast Univ Nat Sci Ed, 2022, 52(2): 263
|
[14] |
薛振林, 張友志, 甘德清, 等. 泵送劑摻量對充填料漿流動性能及充填體力學性能的影響. 金屬礦山, 2020(11):25
Xue Z L, Zhang Y Z, Gan D Q, et al. Effect of pumping agent on fluidity of filling slurry and mechanical properties of filling body. Met Mine, 2020(11): 25
|
[15] |
Liu L, Ruan S S, Qi C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J Clean Prod, 2021, 279: 123684 doi: 10.1016/j.jclepro.2020.123684
|
[16] |
劉浪, 阮仕山, 方治余, 等. 鎂渣的改性及其在礦山充填領域的應用探索. 煤炭學報, 2021, 46(12):3833
Liu L, Ruan S S, Fang Z Y, et al. Modification of magnesium slag and its application in the field of mine filling. J China Coal Soc, 2021, 46(12): 3833
|
[17] |
Dai X D, Aydin S, Yardimci M Y, et al. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos, 2021, 124: 104244 doi: 10.1016/j.cemconcomp.2021.104244
|
[18] |
謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰砂漿流變行為影響的研究. 鐵道科學與工程學報, 2015, 12(1):59
Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on rheological properties of cement-flyash mortar. J Railw Sci Eng, 2015, 12(1): 59
|
[19] |
Li J, Zhang S Q, Wang Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J Hazard Mater, 2020, 400: 123191 doi: 10.1016/j.jhazmat.2020.123191
|
[20] |
Liu L, Fang Z Y, Wang M, et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol, 2020, 370: 206 doi: 10.1016/j.powtec.2020.05.024
|
[21] |
張雄, 張蕾. 流變學理論在水泥基材料中的應用. 粉煤灰綜合利用, 2013, 26(4):9
Zhang X, Zhang L. Application of rheological theory in cement-based materials. Fly Ash Compr Util, 2013, 26(4): 9
|
[22] |
Mahboub K E, Mbonimpa M, Belem T, et al. Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs). Constr Build Mater, 2022, 317: 125863 doi: 10.1016/j.conbuildmat.2021.125863
|
[23] |
陳柯宇, 吳大志, 胡俊濤. 基于組分的地聚合物膠凝材料反應機理及其制備參數的研究進展. 硅酸鹽通報, 2020, 39(7):2033
Chen K Y, Wu D Z, Hu J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components. Bull Chin Ceram Soc, 2020, 39(7): 2033
|
[24] |
Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr Build Mater, 2018, 190: 294 doi: 10.1016/j.conbuildmat.2018.09.066
|
[25] |
Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11): 1993 doi: 10.1016/j.cemconres.2004.02.020
|
[26] |
(陳玉潔, 韓鳳蘭, 羅釗. 鎂渣固化/穩定污酸渣中重金屬銅和鎘. 無機鹽工業, 2015, 47(7):48
Chen Y J, Han F L, Luo Z. Solidification/stabilization of heavy mental Cu and Cd in waste acid residue by magnesium slag. Inorg Chem Ind, 2015, 47(7): 48
|
[27] |
崔自治, 楊維武, 張冬平. 鎂渣火山灰活性試驗研究. 寧夏工程技術, 2007, 6(2):160
Cui Z Z, Yang W W, Zhang D P. Experimental study on pozzolanic activity of magnesium slag. Ningxia Eng Technol, 2007, 6(2): 160
|
[28] |
Guo Z G, Jiang T, Zhang J, et al. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater, 2020, 231: 117115 doi: 10.1016/j.conbuildmat.2019.117115
|
[29] |
李響, 閻培渝. 粉煤灰摻量對水泥孔溶液堿度與微觀結構的影響. 建筑材料學報, 2010, 13(6):787
Li X, Yan P Y. Influence of fly ash content on alkalinity of pore solution and microstructure of cement pastes. J Build Mater, 2010, 13(6): 787
|
[30] |
趙建會, 劉浪. 基于坍落度的充填膏體流變特性研究. 西安建筑科技大學學報(自然科學版), 2015, 47(2):192
Zhao J H, Liu L. Research into rheological properties of backfill paste based on the slump test. J Xi’an Univ Archit &Technol Nat Sci Ed, 2015, 47(2): 192
|
[31] |
沈慧明, 吳愛祥, 姜立春, 等. 全尾砂膏體小型圓柱塌落度檢測. 中南大學學報(自然科學版), 2016, 47(1):204
Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Central South Univ Sci Technol, 2016, 47(1): 204
|
[32] |
Panchal S, Deb D, Sreenivas T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages. Adv Powder Technol, 2018, 29(9): 2211 doi: 10.1016/j.apt.2018.06.005
|
[33] |
王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519
Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519
|
[34] |
肖佳, 王大富, 左勝浩, 等. 基于穩態流變測試的水泥漿體剪切模式研究. 硅酸鹽通報, 2017, 36(7):2387
Xiao J, Wang D F, Zuo S H, et al. Shear protocols of cement paste based on steady rheological test. Bull Chin Ceram Soc, 2017, 36(7): 2387
|
[35] |
Wu A X, Ruan Z E, Wang J D. Rheological behavior of paste in metal mines. Int J Miner Metall Mater, 2022, 29(4): 717 doi: 10.1007/s12613-022-2423-6
|
[36] |
Jiang D B, Li X G, Lv Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics. Constr Build Mater, 2020, 232: 117228 doi: 10.1016/j.conbuildmat.2019.117228
|
[37] |
謝友均, 陳小波, 馬昆林, 等. 石灰石粉對水泥-粉煤灰漿體剪切變稀和剪切增稠的影響. 建筑材料學報, 2015, 18(5):824
Xie Y J, Chen X B, Ma K L, et al. Effects of limestone powder on shear thinning and shear thickening of cement-fly ash paste. J Build Mater, 2015, 18(5): 824
|
[38] |
Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem Concr Res, 1997, 27(6): 907 doi: 10.1016/S0008-8846(97)00073-2
|
[39] |
馬昆林, 龍廣成, 謝友均, 等. 水泥–粉煤灰–石灰石粉漿體塑性黏度的影響因素. 硅酸鹽學報, 2013, 41(11):1481
Ma K L, Long G C, Xie Y J, et al. Factors on affecting plastic viscosity of cement–fly ash–limestone compound pastes. J Chin Ceram Soc, 2013, 41(11): 1481
|
[40] |
Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42(1): 111 doi: 10.1122/1.550884
|
[41] |
Egres R G, Nettesheim F, Wagner N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol, 2006, 50(5): 685 doi: 10.1122/1.2213245
|
[42] |
Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. observation of a flow instability. Trans Soc Rheol, 1972, 16(1): 155
|
[43] |
Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech, 1985, 155: 105 doi: 10.1017/S0022112085001732
|
[44] |
謝友均, 陳小波, 馬昆林, 等. 粉煤灰對水泥漿體的剪切變稀和剪切增稠作用. 硅酸鹽學報, 2015, 43(8):1040
Xie Y J, Chen X B, Ma K L, et al. Effects of fly ash on shearing thinning and thickening of cement paste. J Chin Ceram Soc, 2015, 43(8): 1040
|
[45] |
馬昆林, 馮金, 龍廣成, 等. 水泥?粉煤灰漿體流變特性及其機理研究. 鐵道科學與工程學報, 2017, 14(3):465
Ma K L, Feng J, Long G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste. J Railw Sci Eng, 2017, 14(3): 465
|
[46] |
Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater, 2017, 138: 35 doi: 10.1016/j.conbuildmat.2017.01.126
|
[47] |
劉宇, 黎夢圓, 閻培渝. 礦物摻合料對膠凝材料漿體流變性能和觸變性的影響. 硅酸鹽學報, 2019, 47(5):594
Liu Y, Li M Y, Yan P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste. J Chin Ceram Soc, 2019, 47(5): 594
|
[48] |
Jiang H Q, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol, 2020, 372: 258 doi: 10.1016/j.powtec.2020.06.009
|
[49] |
劉浪. 礦山充填膏體配比優化與流動特性研究[學位論文]. 長沙: 中南大學, 2013
Liu L. Research on Proportion Optimization and Flow Characteristic of Backfill Paste in Mine Sites [Dissertation]. Changsha: Central South University, 2013
|
[50] |
唐修生, 蔡躍波, 溫金保, 等. 磨細礦渣復合漿體流變參數與流動度的相關性. 硅酸鹽學報, 2014, 42(5):648
Tang X S, Cai Y B, Wen J B, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag. J Chin Ceram Soc, 2014, 42(5): 648
|
[51] |
Celik F, Canakci H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater, 2015, 91: 187 doi: 10.1016/j.conbuildmat.2015.05.025
|
[52] |
Lachemi M, Hossain K M A, Lambros V, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res, 2004, 34(2): 185 doi: 10.1016/S0008-8846(03)00233-3
|
[53] |
李化運. 煤矸石膠結充填材料流動性能經時變化研究[學位論文]. 太原: 太原理工大學, 2019
Li H Y. Study on Time-dependent Changes in Flow Properties of Cemented Coal Gangue Backfill Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2019
|
[54] |
南雪麗, 姬建瑞, 魏定邦, 等. 石灰石粉對超高強水泥基材料流變特性的影響. 重慶交通大學學報(自然科學版), 2022, 41(5):100
Nan X L, Ji J R, Wei D B, et al. Influence of limestone powder on rheological properties of ultrahigh strength cement-based materials. J Chongqing Jiaotong Univ Nat Sci, 2022, 41(5): 100
|