<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
FENG Kai, HE Dong-feng, XU An-jun, ZHAO Hong-bo, LIN Shi-jing. End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network[J]. Chinese Journal of Engineering, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004
Citation: FENG Kai, HE Dong-feng, XU An-jun, ZHAO Hong-bo, LIN Shi-jing. End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network[J]. Chinese Journal of Engineering, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004

End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network

doi: 10.13374/j.issn2095-9389.2022.05.29.004
More Information
  • Corresponding author: E-mail: hdfcn@163.com
  • Received Date: 2022-05-29
    Available Online: 2022-10-31
  • Publish Date: 2023-07-25
  • In the steel manufacturing process, an accurate prediction of end sulfur content in KR is crucial for steadily controlling sulfur content in molten iron and improving steel properties. Regarding the end sulfur content prediction in the KR process, an integrated modeling method based on Kmeans clustering analysis and the BP neural network (BPNN) is proposed in this paper. As an unsupervised learning method, Kmeans clustering analysis can complete data classification according to the similarity of influencing factors instead of depending on target values. The BPNN, as a supervised learning method, can effectively explore the correlation between influencing factors and target values. The integration of these two methods can realize information exploration of data from different dimensions. Based on this understanding and the actual production data in one steel plant, the prediction model of end sulfur content in KR based on Kmeans–BPNN is studied. First, datasets of different operating conditions are constructed according to the pattern recognition and classification of production data in the KR process through Kmeans clustering. By establishing the relation curve between the number of clustering centers and the mean error of clustering results and selecting the adjacent positions to 10% of the maximum mean error difference, the number of Kmeans clustering centers is confirmed as five. Then, the prediction model is trained by different datasets based on the BPNN. The input layer and hidden layer have five nodes, and the output layer has one node in the BPNN-based prediction model of end sulfur content in KR. A piecewise linear function is selected as the activation function, and the maximum number of training is fixed at 1,000. Finally, the prediction models of different datasets are integrated and formulated in the final prediction model of end sulfur content in molten iron, realizing the prediction of different molten iron conditions and operating conditions. To test and verify the effectiveness and accuracy of the prediction model based on the Kmeans–BPNN method, the end sulfur content prediction of molten iron in KR is performed by applying prediction models based on desulfurization reaction kinetics, routine BPNN, and Kmeans–BPNN using the same training and testing datasets. The prediction results indicate that the end sulfur content prediction in KR based on the Kmeans–BPNN method is significantly more accurate than that of the prediction model based on the desulfurization reaction kinetics and the routine BPNN model.

     

  • loading
  • [1]
    Feng K, Xu A J, He D F, et al. Case-based reasoning method based on mechanistic model correction for predicting endpoint sulphur content of molten iron in KR desulphurization. Ironmaking Steelmaking, 2020, 47(7): 799 doi: 10.1080/03019233.2019.1615307
    [2]
    Chen W, Wang B X, Chen Y. Prediction for the sulfur content in pig iron of blast furnace by combining artificial neural network with genetic algorithm. Adv Mater Res, 2010, 143-144: 1137 doi: 10.4028/www.scientific.net/AMR.143-144.1137
    [3]
    張軍紅, 謝安國, 沈峰滿. 基于神經網絡對鐵水硫含量的優化和分析. 材料與冶金學報, 2006, 5(2):86 doi: 10.3969/j.issn.1671-6620.2006.02.002

    Zhang J H, Xie A G, Shen F M. Optimization and analysis of sulfur content in hot metal based on neural network. J Mater Metall, 2006, 5(2): 86 doi: 10.3969/j.issn.1671-6620.2006.02.002
    [4]
    張慧書, 戰東平, 姜周華. 基于改進BP神經網絡的鐵水預處理終點硫含量預報模型. 鋼鐵, 2007, 42(3):30 doi: 10.3321/j.issn:0449-749X.2007.03.008

    Zhang H S, Zhan D P, Jiang Z H. Final sulfur content prediction model based on improved BP artificial neural network for hot metal pretreatment. Iron Steel, 2007, 42(3): 30 doi: 10.3321/j.issn:0449-749X.2007.03.008
    [5]
    Zhou H, Tang Z Y, Wen B J, et al. Application of statistical analysis, Deng's relevancy, and BP neural network for predicting molten iron sulfur in COREX process. Int J Chem React Eng, 2020, 18(12): 20220122
    [6]
    王煒, 陳畏林, 葉勇, 等. 神經網絡在高爐鐵水硫含量預報中的應用. 鋼鐵, 2006, 41(10):19 doi: 10.3321/j.issn:0449-749X.2006.10.004

    Wang W, Chen W L, Ye Y, et al. Application of neural network to predict sulphur content in hot metal. Iron Steel, 2006, 41(10): 19 doi: 10.3321/j.issn:0449-749X.2006.10.004
    [7]
    方忠強, 孫彥輝. 高堿度精煉渣脫硫分析及硫分配比預測模型. 煉鋼, 2014, 30(1):46 doi: 10.3969/j.issn.1002-1043.2014.01.012

    Fang Z Q, Sun Y H. Desulphurization analysis of slag with high basicity and prediction model for sulfur distribution ratio. Steelmaking, 2014, 30(1): 46 doi: 10.3969/j.issn.1002-1043.2014.01.012
    [8]
    Qiu D, Dai W J, Zhang N. Research on prediction model of end sulfur content for converter smelting. Adv Mater Res, 2014, 1037: 26 doi: 10.4028/www.scientific.net/AMR.1037.26
    [9]
    Al-Jamimi H A. Prediction of sulfur content in desulfurization process using a fuzzy-logic based model. Solid State Phenom, 2019, 287: 80 doi: 10.4028/www.scientific.net/SSP.287.80
    [10]
    Zhang G, Liu H C, Li P L, et al. Load prediction based on hybrid model of VMD–mRMR–BPNN–LSSVM. Complexity, 2020, 2020: 6940786
    [11]
    Liu Y F, Wang Q, Zhang X D, et al. Using ANFIS and BPNN methods to predict the unfrozen water content of saline soil in Western Jilin, China. Symmetry, 2018, 11(1): 16 doi: 10.3390/sym11010016
    [12]
    Ahmed W, Muhammad K, Siddiqui F I. Predicting calorific value of thar lignite deposit: A comparison between back-propagation neural networks (BPNN), gradient boosting trees (GBT), and multiple linear regression (MLR). Appl Artif Intell, 2020, 34(14): 1124 doi: 10.1080/08839514.2020.1824091
    [13]
    Liu Y, Li B F. Bayesian hierarchical K-means clustering. Intell Data Anal, 2020, 24(5): 977 doi: 10.3233/IDA-194807
    [14]
    Geng X Y, Mu Y K, Mao S L, et al. An improved K-means algorithm based on fuzzy metrics. IEEE Access, 8: 217416
    [15]
    T?rn?uc? C, Gómez-Pérez D, Balcázar J L, et al. Global optimality in k-means clustering. Inf Sci, 2018, 439-440: 79 doi: 10.1016/j.ins.2018.02.001
    [16]
    Ming Y W, Zhu E, Wang M, et al. Scalable k-means for large-scale clustering. Intell Data Anal, 2019, 23(4): 825 doi: 10.3233/IDA-173795
    [17]
    Moodi F, Saadatfar H. An improved K-means algorithm for big data. IET Softw, 2022, 16(1): 48 doi: 10.1049/sfw2.12032
    [18]
    Hu H, Zhang J F, Li T. A novel hybrid decompose-ensemble strategy with a VMD–BPNN approach for daily streamflow estimating. Water Resour Manag, 2021, 35: 15
    [19]
    Jiang X P, Wang Z T, Zhu H, et al. Hydraulic turbine system identification and predictive control based on GASA–BPNN. Int J Miner Metall Mater, 2021, 28(7): 1240 doi: 10.1007/s12613-021-2290-6
    [20]
    Lu Y, Xing Y, Li X, et al. A new approach of CMT seam welding deformation forecasting based on GA–BPNN. Frattura ed Integrità Strutturale, 2020, 14(53): 325
    [21]
    Cai B, Pan G L, Fu F. Prediction of the postfire flexural capacity of RC beam using GA–BPNN machine learning. J Perform Constr Fac, 2020, 34(6): 04020105 doi: 10.1061/(ASCE)CF.1943-5509.0001514
    [22]
    Sun Y B, Xiao J, Liu H, et al. Deformation prediction based on an adaptive GA–BPNN and the online compensation of a 5-DOF hybrid robot. Ind Robot, 2020, 47(6): 915 doi: 10.1108/IR-01-2020-0016
    [23]
    Wang D H, Sun J Y, Dong A P, et al. Prediction of core deflection in wax injection for investment casting by using SVM and BPNN. Int J Adv Manuf Tech, 2019, 101(5-8): 2165 doi: 10.1007/s00170-018-3069-4
    [24]
    Yang Z, Zhou Q, Wu X, et al. Detection of water content in transformer oil using multi frequency ultrasonic with PCA–GA–BPNN. Energies, 2019, 12(7): 1379 doi: 10.3390/en12071379
    [25]
    Yang X, Zhou Q, Wang J, et al. Predictive control modeling of ADS's MEBT using BPNN to reduce the impact of noise on the control system. Ann Nucl Energy, 2019, 132(10): 576
    [26]
    Cai B, Sun X, Wang J, et al. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. J Manuf Syst, 2020, 57(7): 148
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (375) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164